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Abstract

Chagas Disease (CD) is a vector–borne infectious disease transmitted from animals

to humans and reversely. It is caused by the parasite Trypanosoma cruzi (abbv. as

T. cruzi). It is forcing an enormous social burden on public health and counts as one

of the most major threats to human health. Based on WHO statistical analysis in

2019, CD affects about 7 million people and is responsible for nearly 50,000 annual

mortalities around the world. Also an average of 80 million people are living in risky

areas for infection in different parts of the world.

The disease has two phases of acute and chronic. Diagnosing of CD can be

performed at both acute and chronic phases. It invloves analyzing clinical, epidemi-

ological, and laboratory data. Since controlling and treating CD is easier in the

early stages, detecting it in the acute phase plays an essential role in overcoming

and controlling it.

There are many clinical trials dedicated to this problem, but progress in compu-

tational research (automatic identification) has been limited. Therefore, this work

presents four automated CD vector identification approaches that classify several

different vectors of kissing bugs with acceptable accuracy rates. Classification of

different CD vectors is important because carriers of CD belong to different species

classes unevenly scattered in different parts of the world. Therefore, differentiating

all species of CD vectors plays an important role in designing a robust global system

for automatic identification.

Three of our proposed methods are composed of preprocessing, feature extraction,

feature selection, data balancing, and classification phases. The preprocessing steps

are background removal, gray–scaling, and down–sizing. The Principal component

analysis (PCA) algorithm is utilized for feature extraction. A correlation–based subset

selection is used for feature selection. The classes are balanced by oversampled the

minority classes. Finally, the employed classification techniques include Decision Tree

(DT), Random Forrest (RF), and Support Vector Machine (SVM). These three methods

are named “PCA+DT”,“PCA+RF”, and “PCA+SVM”. In the fourth approach, we

applied two deep convolutional neural networks (CNN) on our preprocessed dataset
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and omitted the feature extraction and feature selection steps. Our two convolutional

neural networks VGG16 and 7–layer CNN are trained using the same oversampled

image dataset.

The average accuracy using 150–features dataset for Brazilian vectors is 100% for

PCA+DT and PCA+RF methods; 98.20% for PCA+SVM; 88.60% for VGG16; and

97.57% for 7–layer CNN. Brazilian vectors belong to 39 species of kissing bugs with

1620 images in the utilized dataset. The average accuracy using 150–features dataset

for Mexican vectors is 100% for PCA+DT and PCA+RF; 98.40% for PCA+SVM; 89.20%

for VGG16; and 96.48% for 7–layer CNN. Mexican vectors belong to 12 species of

kissing bugs with 410 images in the utilized dataset.

Our results are promising and outperform previously developed systems. Given

that we have a small dataset, the results of tree–based algorithms (DT and RF) are

better than SVM and convolutional neural networks (CNN). Upon availability of

larger datasets of kissing bugs, the results of SVM and CNN are most likely to

improve.
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Contributions

1. Chagas disease is an ongoing threatening parasitic disease spreading worldwide

rapidly with not much research conducted on presenting automatic Chagas

disease vectors identification systems for public use. In this research, we pro-

posed four different fully automatic identification systems for overcoming this

challenge.

2. Although there is a severe shortage of sufficient Chagas disease image datasets

and the available datasets are rather small, we managed to achieve very promis-

ing results for this problem. Our methods outperform previously developed

systems significantly.
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chapter 1

Introduction

“Chagas disease is caused by the T. cruzi parasite. It is mostly transmitted
by a blood–sucking insect called Triatomine bug and less frequently from
mother to fetus or by digestion of contaminated food or drink. About one–
third of infected individuals develop chronic heart disease. It is mostly
found in Central and South America, but there are now an estimated
300,000 infected people in the United States. [1]”

Chagas Disease (CD) is a vector–borne infectious disease transmitted from animals

to humans and reversely. It is caused by the parasite Trypanosoma cruzi (abbv. as

T. cruzi) [2]. In 1909, it was explained in detail for the first time by Carlos Chagas.

He was a Brazilian biologist and medical practitioner who worked as a clinician and

researcher. He found and identified the T. cruzi parasite in the blood of Brazilian

railroad workers [3]. The parasite was the reason of an acute feverish illness afflicting

them. He suspected that The disease is vector–borne. The Triatomine vectors (also

known as “kissing bug”) were suspected to be the carriers of T. cruzi parasite [2].

To see whether these bugs harbored potential pathogens, Chagas dissected them

and found numerous trypanosomes in their hindgut which he named T. cruzi. The

parasite name was assigned in honour of his mentor, the Brazilian medical practitioner

and biologist Oswaldo Cruz (1872–1917). Some infected bugs were sent to Cruz,

where they were allowed to bite marmoset monkeys. In last than a month, the

monkeys got infected and many trypanosomes were detected in their blood. Soon

afterward, Chagas also discovered that the parasite was infective to several other

laboratory animals. Chagas was sure that he had found a pathogenic organism of

human infectious disease but did not know what kind of sickness it was.

The breakthrough came in 1909 once he was reffered to take a look at a two–

year–old female patient who was feverish with enlarged spleen and liver and swollen

lymph nodes. Upon first examination, no parasites were found, but four days later

numerous trypanosomes were spotted in her blood with similar morphology to those
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F igure 1 .1 : From left: the first and third images: different types of kissing bugs (if
they are infected they can transmit T. cruzi). The second image: T. cruzi parasite in a
thin blood smear stained with Giemsa.

previously detected in infected marmoset monkeys. Chagas had discovered a new

human disease which soon bore his name [4].

The T. cruzi parasite is usually transmitted via the feces of kissing bugs, with

Triatoma infestans, Rhodnius proxilus, and Panstrongylus megistus being the most im-

portant vectors. As T. cruzi cannot penetrate intact skin, it enters the human body

through microlesions that have been introduced and contaminated with feces when

individuals (mammalian host) scratch the itching vector’s bite [2, 4].

Carlos Chagas described nearly all the salient features of the T. cruzi life cycle. T.

cruzi is a kinetoplastid protozoan that infects vertebrate and invertebrate hosts during

defined stages in its life cycle [2]. Images of various species of Triatomine bugs and T.

cruzi parasite are depicted in Figure 1.1 [5].

Based on disease burden estimates of World Health Organization (WHO), CD

is first among parasitic diseases in Latin America [6]. Formerly transmission was

concentrated in rural areas of Latin America where poor household conditions helped

vector infestation. But in the last few decades, due to successful vector control

programs, transmission in rural areas is decreased. On the other hand, immigration

has brought infected people from rural to urban areas both inside and outside Latin

America [7]. Therefore nowadays CD is also a concern for non–endemic areas in

different continents such as America (Latin, Central, and North America), Europe

(mainly Spain), Australia, and Asia (mainly Japan) [8]. Based on WHO statistical

analysis in 2019, CD affects about 7 million people and is responsible for nearly 50,000
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F igure 1 .2 : Mapping data showing epidemiological changes of CD between 2002

and 2011.

annual mortalities around the world. Also an average of 80 million people are living

in risky areas for infection in different parts of the world [9, 10, 11]].

In 2007, management and control efforts in Latin America were formally joined

to deal with the globalization of CD [6]. They recognized the increasing presence of

imported cases in non–endemic countries including USA and the potential for local

transmission through non–vectorial routes (Figure 1.3 [12]). Geospatial data from 2002

to 2011 supported this claim and demonstrated that CD exists in countries outside of

Latin America, including the USA (Figure 1.2) [13]. In the Figure 1.2, red refers to

endemic areas where transmission is vector–borne. Yellow refers to endemic areas

where transmission is occasionally vector–borne. Blue refers to non–endemic areas

where transmission is blood–borne or organ transplantation, etc. [13].

Several types of research have documented human CD in the United States. The

first notifiable cases of CD was documented in 2013 and 2014 in Texas. The total of 39

human cases were reported including 12 locally acquired and 27 endemic cases [14].

The southern side of states from California to Georgia contains established cycles of

T. cruzi involving several kissing bug species and different mammalian hosts such as

dogs, possums and raccoons [15, 16]. But mostly, T. cruzi infected cases in the United

States are Latin American immigrants moved from endemic areas [17].
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F igure 1 .3 : Estimated number of CD cases outside of Latin America.

1 .1 life cycle and clinical forms

The kissing bugs feed on blood during all the stages of their lives. They may get the T.

cruzi parasite from feeding on an infected mammalian host [18]. The T. cruzi parasite

is placed in the digestive system of kissing bugs. They pass on the T. cruzi parasite to

other mammalian hosts through their contaminated feces placed on the bite site [19].

The CD infection has two phases. After the initial T. cruzi infection and an

incubation period of 5–40 days, around 20% of infected individuals enter the acute

phase. The acute phase has symptoms like high–grade fever, anorexia, abdominal

pain, and local swelling around the bite site (mostly eyes and lips) [20]. Because of

the mild nature of acute CD symptoms, new infections often go unrecognized [21].

The mortality rate of the acute CD is around 8%. The most number of deaths occur in

young children [22]. Though the mortality rate in the acute phase is low, 70–90% of

those infected become asymptomatic carriers of the parasite [21].

After a period of 4–8 weeks, the acute phase symptoms decreases and the clinical

manifestations disappear spontaneously in around 90% of the cases. In this stage, the

disease enters the chronic phase [23]. During the chronic phase, the infection remains

clinically silent for life in around 65% of cases [19].
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However, most T. cruzi infected people become asymptomatic carriers of the para-

site, usually with low or undetectable parasitemia. Although T. cruzi specific antibod-

ies and DNA may remain at detectable levels in the blood [24, 25]. But the rest of the

patients develop clinical manifestations such as cardio digestive problems [26]. The

chronic CD is considered a disabling disease. It is responsible for the most significant

morbidity and mortality among all parasitic diseases [27].

1 .2 transmission routes

Vertical transmission (vector–borne) is the most common way of T. cruzi tranmission

by kissing bugs in Latin America. The kissing bugs are nocturnal feeders that live in

a variety of environments surrounding human housings, including cracks and holes

within the walls, ceilings and floors of housing structures.

After taking a blood meal, infected kissing bug often passes T. cruzi onto its host

by excreting contaminated feces at the bite site. The T. cruzi can enter the bite wound

or a nearby mucosal membrane such as the conjunctiva when the victim inadvertently

rubs these parasites across their skin. Other routes of transmission include congenital,

transfusion of contaminated blood, transplantation of organs from infected donors,

ingestion of contaminated food or drinks, and accidental exposure (e.g., laboratory

accidents). Once in the bloodstream of a mammalian host, T. cruzi can infect a variety

of cell types in the body and establish a chronic infection [27]. In non–endemic areas,

the transmission occurs mainly through blood transfusion, organ transplantation, or

vertical transmission from mother to child [26].

1 .2 .1 Vector–borne transmission

The vector–borne transmission route, occurring exclusively within the Americas (Cen-

tral and South), continues to be the predominant mechanism for new human infec-

tions. The vectorial route is considered the classic mode of T. cruzi transmission.

The excretion of infected bugs contain metacyclic trypomastigotes that may enter

the human body through the bite wound, intact conjunctiva (if eye is bitten) or

other mucous membranes [2]. Vertorial transmission is the most interesting type of
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transmission from an epidemiological point of view, due to its direct connection to

social, cultural, and economic aspects of a population.

1 .2 .2 Blood–borne transmission

Transfusional T. cruzi transmission was postulated in 1936 and initially documented

in 1952. In 1991, the spread of T. cruzi infection in donated blood units ranged from

1 to 60% in Latin American cities. Since then, blood donation screening has become

accepted as a vital pillar of the CD management initiatives [28]. Transmission of T.

cruzi using blood transfusion remains probably the second most frequent transmis-

sion mechanism. This issue used to be solely evident in Latin America. Yet with the

rise in immigration of CD patients to non–endemic countries, a new global scenery

for this mechanism of transmission has emerged [29].

1 .2 .3 Congenital transmission

Between 1 to 10% of infants of T. cruzi infected mothers are born with congenital CD

[30]. Congenital transmission may happen in a chain manner in the absence of the

vector, perpetuating the disease from congenitally infected womens to their infants.

The reported factors that increase the risk of this form of transmission include higher

maternal parasitemia level, younger maternal age, less robust anti–T. cruzi immune

responses, HIV, and parasite strain in an animal model [2].

1 .2 .4 Organ–derived transmission

The recipients of an organ from a T. cruzi infected organ donor might develop acute

T. cruzi infection. However, this form of transmission is not universal. The risk

from heart transplantation is thought to be higher than that from kidney or liver

transplantation [31].

1 .2 .5 Oral transmission

In the recent years, rising attention has focused on the oral route of T. cruzi parasite

transmission. Several outbreaks attributed to contaminated fruit or drinks have been
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reported from Brazil and Venezuela. Most outbreaks are rather small, affecting family

groups in the Amazon region. To date, the largest reported outbreak led to more

than 100 infections among students and staff at a school in Caracas. Locally prepared

guava juice was implicated [32]. The oral transmission of T. cruzi is the most common

way among animals in the wild cycle. Because several species of wild mammals such

as small primates frequently ingest insects [29].

1 .3 importance of early diagnosis and treatment

Diagnosing of CD can be performed at both acute and chronic phases. It invloves

analyzing clinical, epidemiological, and laboratory data. In the acute phase, para-

sitological test can be performed to determine the presence of parasites in the blood.

These tests can be direct as blood smear or thick blood smear or by multiplication

as hemoculture, xenodiagnoses, and polymerase chain reaction (PCR)1. Due to the

higher chance of curing CD in the acute phase, early diagnosis plays an essential role

in the treatment process. In the chronic phase, the minimum of two serologic tests

should be performed to find anti–T. cruzi antibodies. These tests include indirect

immunofluorescence, hemagglutination, and enzyme linked immunosorbent assay

(known as ELISA) [26]. The challenges in control, diagnosis, treatment, and clinical

management at different phases of CD is illustrated in Figure 1.4 [35].

1 .3 .1 Known Drugs

The known medicine currently in use as antiparasitic therapy and proven effective for

CD are Benznidazole (BZ) and Nifurtimox (NFX). The NFX was the first drug used

for CD treatment in 1952. The BZ got introduced at the end of the 1970s. Neverthe-

less, these drugs are useful in acute cases, in congenital cases, and reactivation due

to immunosuppression. However, treatment is often discontinued due to different

diverse side effects [7] with a more intense side effect for NFX. Although there is

1PCR is a laboratory technique initially developed to make millions of copies of a particular section
of DNA. It has been widely used for the diagnosis and monitoring of disease progression and therapy
outcome in many infectious diseases. Since 1989, PCR strategies have been developed, aiming to
analyze clinical samples infected with T. cruzi [33, 34].



8

F igure 1 .4 : Challenges in human CD: control, diagnosis, treatment, and clinical
management.

no evidence to support the use of medicine treatment in the chronic phase, some

researches have demonstrated the effect of these drugs in delaying the progression of

CD in the evaluated cases [26].

Regardless of the route of infection, management of T. cruzi transmission contin-

ues to be a challenge, especially considering disease emergence and reemergence. It
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is also critical to detect infection early to provide immediate treatment to the patients.

Based on observations, it is estimated that treatment is effective in minimum of 80%

of treated acute patients. Lack of detection of the acute phase or failure in treatment

lead to disease chronification. Given that approximately 30% of the patients in the

chronic phase will develop severe clinical forms of CD, which often results in death,

clinical management is critical. However, as long as the mechanisms responsible

for patient progression from the indeterminate forms to the symptomatic forms of

CD are not thoroughly understood, clinical management presents another essential

challenge. The search for prognostic markers of disease progression is a critical aspect

for preventing pathology and introducing higher clinical measures [35].

The rest of the thesis is organized as follows. In chapter 2, the clinical trials and com-

putational studies of CD are discussed. The background reading regarding utilized

algorithms and methods in this research are explained in chapter 3. Our proposed

frameworks are explained in chapter 4. The acquired results are discussed in chapter 5.

Finally, this research is concluded in chapter 6.
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chapter 2

Literature Review

Community–based vector supervision has been common for several decades as an

approach to manage CD in endemic areas (Latin America) and also recently in non–

endemic areas including southern states of USA [36]. Several clinical trials and social

programs are performed to raise awareness and promote health information regard-

ing CD. They also aim to train doctors, nurses and nursing assistants, healthcare

professionals, and laboratory technicians to be able to diagnose and treat CD in its

initial phase [29].

2 .1 clinical trials

In 2009, Kjos et al. [16] integrated data from multiple sources such as newly collected

kissing bug species from new field studies, evaluation of preserved kissing bugs,

analysis of government reports, and abstraction of peer–reviewed scientific journal

articles to create a biogeographical profile of triatomine vector species found in state

of Texas. The goal of their study was to assemble knowledge on triatomine bugs

regarding species identification, collection site attributes, and T. cruzi infection status

from diverse sources to provide a comprehensive geospatial description of endemic

vector species in Texas. Their study provided new information on the distribution

and infection prevalence of triatomine species in Texas. They concluded that CD

vectors in Texas are widely distributed and have adapted to ecologically numerous

settings. The high T. cruzi infection spread among different species surrounding

human environments suggests an active peridomestic CD transmission cycle in Texas.

In 2010, a case–controlled, cohort–nested, epidemiologica study [32] was con-

ducted throughout an outbreak of acute CD that established at a school community in

Venezuela. Even though vector transmission is the prominent and classic mode of CD

transmission particularly in rural areas, this outbreak was unique because it affected a

large urban young middle–class healthy population and resulted in a striking public
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health emergency. The study was conducted to assess the extent of the outbreak

and to identify possible sources of infection. Because the outbreak happened in an

urban area of the city with no current vertical transmission, oral transmission (food–

borne) was persumed to be the route. The rapid detection and treatment avoided

high morbidity and mortality. The population of study consisted of all students,

teachers, workers from the school, external persons involved with the preparation

or transportation of food consumed in the school, and any person considered to be

a “school contact” potentially at risk. They used PCR to evaluate a representative

number of one hundred fifty blood samples and extracted the corresponding DNAs.

The infection was confirmed in 103 of 1000 exposed cases and BZ and NFX was

prescribed and used for severe acute phase cases. Based on their statistical analysis

determined by oarasitological methods and PCR, 44 (40.7%) cases had positive test

results. This rate was amongst the highest rates of parasitemia ever documented in

an orally transmitted CD outbreak by that time.

In 2010, Sarkar et al. [37] assessed the spatial relative risk of the establishment

of autochthonous CD cycles in Texas. Their analysis consisted of five stages of risk

assessment for three most common Triatomine bugs in Texas: (1) an ecological risk

analysis using predicted vector distributions. (2) an incidence–based risk analysis

based on parasite occurrence. (3) a joint analysis of ecology and incidence using

formal multi–criteria analysis. (4) a joint analysis using a composite risk model.

Finally (5) a computation of the relative expected exposure rate taking into account

human population. Their complete analysis was to argue that there is sufficient

widespread risk for CD in Texas to warrant it to be declared reportable and other

measures be taken. Based on their analysis, they suggested four recommendations:

(1) They recommended that CD be designated as reportable in Texas as it has been in

Arizona since 2007 and Massachusetts since 2008. (2) The serological status of human

and canine populations should be investigated in Texas. (3) In order to prevent the

establishment and spread of CD, wild species, especially rodents, merit investigation

and monitoring in high–risk areas. and (4) The testing of blood donors for antibodies

to CD should be made mandatory at least in high–risk areas.
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In 2011, Schijman et al. [25] launched a global collaborative study by twenty six

professional PCR laboratories from sixteen different countries in America and Europe.

This study was the primary crucial step aiming at the analysis and validation of

currently used PCR procedures for the detection of T. cruzi infection in human blood

samples and towards the assessment of a regular standard operative procedure.

In 2013, Lee et al. [38] designed a Markov model to estimate the global and

regional health and economic burden of CD from a societal perspective. Their Markov

model structure consisted of five different five states. Their structure had a one year

cycle length. The five phases are the acute disease, intermediate disease, chronic

disease (cardiomyopathy with or without congestive heart failure), megaviscera, and

death. Major model parameter inputs, including the annual probabilities of transition-

ing from one state to another, and present case estimates for CD came from various

sources, including WHO and other epidemiological and disease–surveillance based

reports. Using their simulation model, they estimated the economic burden of CD in

comparison to other prominent diseases globally. They calculated annual and lifetime

health–care costs and disability–adjusted life–years (DALYs) for individuals, countries,

and regions. The concluded that productivity losses resulting from premature death

are an economic argument for paying more considerable attention to CD.

In 2015, Cutris–Robles et al. [18] designed a citizen science program for CD

research in 2013 and 2014 in Texas. They asked citizens to submit photos of cap-

tured kissing bugs along with corresponding information. They received nearly

4000 emails that resulted in a total of 1,980 kissing bug submissions. Over 99% of

submissions were from Texas (1,968 kissing bugs), although they also received kissing

bugs from Arizona, Florida, Louisiana, Oklahoma, and Virginia. In their laboratory,

they identified the bugs species, measures and sex, and dissected them. They followed

with DNA extraction to test them for infection. The DNA extraction was performed

through amplifying T. cruzi satellite DNA quantitative real–time PCR technique for T.

cruzi. They gatherd total of 1980 kissing bugs photos and they identified infection in

493 vectors. Their program provides resources for people searching for information

about CD and kissing bugs in USA. They are also requesting kissing bugs samples

through a variety of media including printed pamphlets, phone communication, and
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educational website (http://kissingbug.tamu.edu/), solicitations on news stations,

and a dedicated web address (kissingbug@cvm.tamu.edu/).

In 2015, Peterson et al. [39] designed a simple mathematical model to simulate

domestic vectorial transmission of T. cruzi. They specifically aimed to examine the

interaction between the effects of vector management and control and the presence

of synanthropic animals. They used their model to explore how the interactions

between triatomine bugs, humans and animals impact the number and proportion of

T. cruzi infected individuals (insects and humans). They examined the alternation of

T. cruzi dynamics once control measures targeting vector abundance are defined into

the system. Based on their results, in domestic T. cruzi transmission scenarios where

no vector control measures are applied, a reduction in synanthropic animals may

decrease the T. cruzi transmission to humans, but it would not thoroughly eliminate

the transmission.

In 2018, Cucunuba et al. [40] extended their previous dynamic transmission

model [39] to simulate a domestic CD transmission cycle. They examined the role

of etiological treatment on CD tranmission dynamics and its potential for helping in

interrupting vectorial transmission and having all infected people under care. They

expanded their previous deterministic mathematical T. cruzi infection model includ-

ing vector, human, and animal host populations to explore the impact of etiological

treatment combined with vector control on intrrupting the transmission of CD. They

utilized their previous dynamic model to compare time to intradomiciliary interrup-

tion of T. cruzi transmission in two scenarios: (1) deploying vector control (IRS)

alone and (2) combining vector control with etiological treatment (measured as the

proportion of parasitological cure (PPC) in the infected population). Their model

suggested that control programs would benefit from combining vector control with

etiological treatment of infected individuals. However, vector control’s effectiveness

will depend on the regional and local vector species involved in or contributing

to transmission and their intrinsic susceptibility to IRS interventions. In terms of

etiological treatment, model outputs show that even moderate proportions of annual

PPC (10%–20%) would reduce time frameworks for achieving serological thresholds
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indicative of transmission interruption, infection prevalence in vectors, humans, and

reservoirs, and ultimately CD burden.

In 2018, Orantes et al. [41], developed a Restriction–site Associated DNA sequenc-

ing (RADseq) [42] based pipeline for analysis of mixed species DNA extracted from

Triatoma dimidiata (T. dimidiata – main CD vector in Central America) abdominal

DNA. They claimed that the DNA recovered from a T. dimidiata abdomen represents

a mix of DNA from the parasite T. cruzi (if present), the insect vector, possibly one or

more vertebrate blood meals, and the microbial community existing within the gut,

internal tissues and on the cuticle. They designed a custom bioinformatics pipeline to

separate these DNA sources and analyzed them individually for either SNP genotypes
2 (T. dimidiata, T. cruzi) or taxonomic identification (blood meal, microbes). To

evaluate the effectiveness of their method across a outlined spatial range (from within

village dispersal to broad biogeographic and ecological differentiation), they applied

a nested spatial sampling design for T. dimidiata. They started with multiple insects

in individual villages and extended to samples collected from increasingly greater

distances across major biogeographic regions in Central America from 1999 to 2013.

They claimed their method can effectively separate genomic information of parasite,

vector, microbiome and blood meal even without a sequenced genome for T. dimidiata.

Their results also showed that a mixed DNA approach can provide simultaneous

information about the community of biotic factors involved in T. cruzi transmission.

2 .2 computational trials

Clinical approaches are fairly expensive in terms of resources and expert personnel.

They also need a long period of time to analyze their findings. The alternative

way which is faster and therefore more effective and does not need the expertise

to be performed is developing automated methods for identification of CD vectors.

Therefore designing an automated system to identify CD vectors is essential and holds

a great value.

2SNP genotyping is the measurement of genetic variations of single nucleotide polymorphisms
(SNPs) between members of a species
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F igure 2 .1 : Photographs of the device developed for capturing high–quality images
of kissing bugs. (A) and (B) top view of the device; (C) and (D) lateral view of the
device with the lighting ring and an insect (not a triatomine) placed on the pin.

Automation process is a two stage process. Distinguishing kissing bugs from other

type of bugs and then classifying different types of kissing bugs. Both automation

stages need large datasets to be feasible and there is shortage of suffiecient datasets in

both fields. The current available datasets are rather small with low quality. Due

to this dilemma, in this research we focus on the second step of process. This

shortcoming will be addressed in future work by gathering more images for both

stages.

Identifying different types of kissing bugs is essential because carriers of CD

belong to several different species which are unevenly scattered in different parts

of the world. Therefore differentiating all species of CD vectors plays a important role

in designing a robust universal system for automatic identification of these bugs.

To the best of our knowledge not much research is carried out in this direction.

There is an active research team focused on automatic identification of CD vectors
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F igure 2 .2 : First row: Brazilian Triatomine vectors, second row: Mexican
Triatomine vectors.

using geometrical features of the insects and neural network algorithm [43] and [44].

Their two papers are discussed in the following sections.

In 2017, Gurgel–Goncalves et al. [43] presented a automatic kissing bugs identifica-

tion system in 2017. They designed a rather standard but straightforward and precise

image capturing device for gathering and selecting high resolution captured kissing

bugs at low cost (Figure 2.1 [43]).

The photographs produced using their capturing device are fairly consistent in

resolution, orientation, and quality. These qualities enabled full automation of their

processing. They captured 1903 images of 67 Brazilian triatomine species and 428

images of 19 Mexican species. But because of shortage in images in some species,

they excluded 28 Brazilian and 7 Mexican species from their dataset. Therefor, final

proned dataset was categorized as 51 different species from Brazil (39 species) and

Mexico (12 species). A total of 1898 images was selected by them, consisting of 1502

Brazilian and 396 Mexican vector images. Example of ten different classes, including

six Brazilian kissing bugs and four Mexican kissing bugs, are shown in Figure 2.2.

Their major preprocessing and feature extraction steps include removing (digitally)

background and extraneous body parts (legs, antennae), orientation and identification

of landmarks, measurements and calculation of ratios, and submission to classification
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F igure 2 .3 : Preprocessing steps: (A) raw image of a sample vector (B) binary image
which is the result of background removal and binarization (C) legs and antennas are
removed and edge detection is performed (D) landmarks are extracted from insect’s
body (E) final image is shown along with extracted landmarks.

phase. For preprocessing, they applied substeps such as: correcting lens distortion,

removing background, identifying the edges of specimen’s body, clipping the legs

and antennas from the image, and smoothing the clipped edges (preprocessing steps

are shown in Figure 2.3 [43]).

After that, optimal set of ten geometrical features are extracted. Their extracted

features are: total length/clypeus–pronotum forelobe midpoint, total length/mean

lateral eye margin, total length/mean eye center, total length/mean lateral prono-

tum forelobe, total length/pronotum forelobe midpoint to pronotum–humeral angle

midpoint, total length/mean lateral pronotum humeral angle, total length/total area,

total length/maximum body width, and total length/mean eye center–mean lateral

pronotum fore lobe, and a color ratio (the ratio of average gray scale within a defined

region of interest (ROI) and outside the ROI to the average grayscale value inside the

ROI).
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Table 2 .1 : Summary of species analyzed, sample sizes of photographs, and
identification success rates, for the 12 species of Mexican triatomine bugs analyzed
in this study.

Species Sample Size Success Rate(%)

Panstrongylus rufotuberculatus (Champion, 1899) 7 100.00

Triatoma barberi Usinger, 1939 29 72.40

Triatoma dimidiata (Latreille, 1811) HG1 44 70.50

Triatoma dimidiata (Latreille, 1811) HG2 30 76.70

Triatoma dimidiata (Latreille, 1811) HG3 40 82.50

Triatoma gerstaeckeri (Stål, 1859) 12 83.30

Triatoma longipennis Usinger, 1939 51 72.50

Triatoma mazzottii Usinger 1941 22 77.30

Triatoma mexicana (Herrich-Schaeffer, 1848) 45 80.00

Triatoma nitida Usinger, 1939 15 46.70

Triatoma pallidipennis Stål, 1872 43 90.70

Triatoma phyllosoma (Burmeister, 1835) 58 46.60

The last feature was helpful in improving the distinguishing power of algorithm

for one pair of bugs. For classification, they used a feed–forward neural network

using “nn” package in R. Classification is applied separately on Brazilian and Mexican

species. A feed–forward neural network was used as a classification algorithm. Their

average accuracy was 87.8% and 80.3% for Brazilian and Mexican species respectively.

Full nomenclatural details of Mexican and Brazilian species are explained in Tables

2.1 and 2.2 respectively.
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Table 2 .2 : Summary of species analyzed, sample sizes of photographs, and
identification success rates, for the 39 species of Brazilian triatomine bugs analyzed in
this study.

Species Sample Size Success Rate (%)

Cavernicola lenti Barrett & Arias, 1985 15 93.30

Eratyrus mucronatus Stål, 1859 10 80.00

Panstrongylus diasi Pinto & Lent, 1946 30 96.70

Panstrongylus geniculatus (Latreille, 1811) 45 93.30

Panstrongylus lignarius (Walker, 1873) 28 85.70

Panstrongylus lutzi Neiva & Pinto, 1923 34 88.20

Panstrongylus megistus Burmeister, 1835 84 91.70

Psammolestes tertius Lent & Jurberg, 1965 29 100.00

Rhodnius brethesi Matta, 1919 28 96.40

Rhodnius domesticus Neiva & Pinto, 1923 27 96.30

Rhodnius milesi Carcavallo, Rocha, 37 89.20

Galvão & Jurberg, 2001

Rhodnius montenegrensis Rosa et al. 2012 39 84.60

Rhodnius nasutus Stål, 1859 73 82.20

Rhodnius neglectus Lent, 1954 60 83.30

Rhodnius pictipes Stål, 1872 43 95.30

Triatoma arthurneivai Lent & Martins, 1940 32 78.10

Triatoma baratai Carcavallo & Jurberg, 2000 29 82.80

Triatoma brasiliensis Neiva, 1911 64 76.60

Triatoma carcavalloi Jurberg, Rocha & Lent, 1998 38 86.80

Triatoma circummaculata (Stål, 1859) 21 85.70

Triatoma costalimai Verano & Galvão, 1958 63 85.70

Triatoma delpontei Romana & Abalos, 1947 29 86.70

Triatoma guazu Lent & Wygodzinsky, 1979 28 64.30

Triatoma infestans (Klug, 1834) 54 83.30

Triatoma juazeirensis Costa & Felix, 2007 21 81.00

Triatoma lenti Sherlock & Serafim, 1967 19 78.90

Triatoma maculata (Erichson, 1848) 39 89.70

Triatoma matogrossensis Leite & Barbosa, 1953 32 75.00

Triatoma melanica Neiva & Lent, 1941 29 79.30

Triatoma pintodiasi Jurberg, Cunha & Rocha, 2013 25 88.00

Triatoma platensis Neiva, 1913 27 74.10

Triatoma pseudomaculata Correa & Espínola, 1964 55 70.90

Triatoma rubrovaria (Blanchard, 1843) 54 59.30

Triatoma sherlocki Papa, Jurberg, Carcavallo, 31 93.50

Cerqueira & Barata, 2002

Triatoma sordida (Stål, 1859) 96 81.20

Triatoma tibiamaculata (Pinto, 1926) 41 92.70

Triatoma vandae Carcavallo, Jurberg, Rocha, Galvão, 29 69.00

Noireau & Lent, 2002

Triatoma vitticeps (Stål, 1859) 47 85.10

Triatoma williami Galvão, Souza & Lima, 1965 17 70.60
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F igure 2 .4 : An example image of an individual of Triatoma dimidiata HG1. (A)
Raw image and (B) final image with background removed digitally.

Later in 2019, the same research team improved their classification results and per-

formance using convolutional neural networks [44, 45]. They used two different sets

of raw images and background removed images (cleaned images) as their network’s

input. With different types of images, they tried to understand how their neural

network performs with different image qualities as input (Figure 2.4 [44]). They

reported that the accuracy for raw images was almost the same as cleaned images

(i.e., 82.9% overall accuracy for raw images, vs 83.0% for cleaned images). Their goal

was to be able to compare the results of deep neural network with their previous

statistical–based study [43]. Therefore, they decided to use cleaned images as input

to have consistency for the sake of result comparison.

They improved their average accuracy in comparison with their previous research

to 86.7% and 83.0% for Brazilian and Mexican species respectively. They also applied

a paired t–test on outcomes, which produced P–values of 0.028 and 0.025 for Mexican

and Brazilian triatomines, respectively. Given that the P–values were less than 0.05,

they concluded that the CNN–based results are statistically significantly better than

their previous statistical results. For Mexican species, they achieved improved accu-

racy for 9 out of 12 species and for Brazilian species, their accuracy improved for 23

out of 38 species (Figure 2.5 [44]).
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F igure 2 .5 : Comparison of accuracy rates (%) between deep neural network and
statistical classifier at species level for Mexican and Brazilian triatomine vectors.

.

One dilema of the two above mentioned systems is that they are only demon-

strated on high–quality images, with high resolution, good lighting, and uniform

backgrounds. For example, their dataset only consists of [1936 × 2592] kissing bug

images. It is not practical for working with a lower resolution cell phone captured

images without perfect lighting and uniformity in the setting. Their second limitation

is that their extracted geometrical features need several preprocessing steps using dif-
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ferent image filtering and morphological operations. Finally, their third shortcoming

is the reported accuracy rates that are 80–88%; which leaves room for improvement.

More recently in 2020, Agany et al. [46] reviewed 32 articles to explore the utiliza-

tion of data mining techniques towards vector–host–pathogen relationships identifi-

cation. CD vectors were one of the vector categories they studied and the reference

research [44] was one of the reviewed researches. They designed their review using

PRISMA workflow [47] which is a design method for literature reviews. PRISMA

is utilized to perform a scientific evaluation of the relationships between microbial

pathogens, mammalian hosts and arthropod vectors using data mining. Based on

their evaluation, even though data mining are being progressively utilized in many

different field of life sciences, they do not have taken a root in the field of vector–borne

diseases such as CD.

In another research in 2020, Cruz et al. [48] proposed the use of Elliptical Fourier

descriptors (EFDs) technique to describe the shape of species and to extract mean-

ingful features from the three species of Triatoma dimidiata (T. dimidiata) which are

residing in Mexico and Central America (Colombia, Ecuador, Peru). They utilized the

same dataset as [43] and [44] and only considered the images of three classes of their

interest in their study. The number of species in the three classes of interest in the

reference dataset are 44, 30, and 40 images of the haplogroup 1,2, and 3. They filtered

images that were did not have the necessary quality to perform contour analysis and

selected 37, 23, and 36 images for the three classes respectively.

They performed their preprocessings manually using Photoshop CS5. They re-

moved legs and antennas from each image and only left the body contour. They also

changed the brightness and contrast to minimum and maximum values to achieve a

binary image. They utilized Shape 1.3 software [49] to evaluate the contour shape

based on EFDs. Using this software, they generated the chain code for images. Then

for each image, the Fourier transform for 5, 10, 15, 20, 25, and 30 harmonics were

computed. They applied this experiments to achieve the best discrimination between

the three classes of T. dimidiata species. After that, they applied Principal Compo-

nent Anlysis (PCA) for dimentionality reduction of features. Then, a discriminative

function analysis was performed to select the minimum number of harmonics needed



23

to result in optimal accuracy. Using this techniques, 30 principal components were

selected. An ordination discrimination plot was then generated that allowed the best

class discrimination. Finally, the confusion matrix was computed to calculated the

classification error.

As an alternative technique for classification, a multi–layer perceptron neural net-

work with 30 input and 3 output neurons was designed. The accuracy for 25 harmon-

ics was their best accuracy with 100%, 100%, and 94% accuracy for the three classes

respectively. The average accuracy (around 97%) was a significant improvement over

the reference paper results with average accuracy of nearly 75% [43] and 86% [44] for

the three haplogroups for the first and second reference articles respectively.

Because of the nature of kissing bugs and limitations in gathering many benign

and infectious vectors, there is a shortage of sufficient sets of images in this field. he

available ones are rather small datasets. As you can see, the only computational trials

in this field are using the same dataset to perform their analysis. Due to this shortage,

we used the same dataset of images in this research provided by Gurgel et al. [50]

consisting of 2030 insect photos; to be able to compare the accuracy rates.

Our methods consist of different steps of preprocessing, feature extraction, feature

selection, data balancing and classification stages to achieve higher performance sys-

tems. Our methods overcome the first shortcoming by grayscaling and downsizing

RGB images to 128 × 128 gray–scale images to perform feature extraction easier and

faster. As mentined, the second shortcoming is the numerous preprocessing steps,

we resolve it by minimizing the preprocessing steps to only performing background

elimination.

We also improved the accuracy by utilizing different feature extraction and clas-

sification algorithms. Instead of extracting ten geometrical features, we used the

standard PCA algorithm to extract the best 50 and 150 scattered variance–based

features in images. We balanced our feature datasets as much as possible using

Weka “attributeSelection” and “ClassBalancing” filters. We applied feature selection

to optimize the number of features for Mexican and Brazilian datasets separately

before applying classification algorithms. Finally, for classification we utilized data

mining based algorithms and personalized Decision Tree (DT), Random Forrest (RF),
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and Support Vector Machine (SVM) for our research. We also applied deep learning

based approaches for classification. Deep neural networks have different steps than

data mining based classification algorithms. Feature extraction and feature selection

steps are omitted for deep neural networks. Our methods are explained in detail in

the following chapters.
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chapter 3

Background Concepts and Techniques

As mentioned, our algorithms consist of several steps including preprocessing, feature

extraction, feature selection, data balancing, and classification. We evaluate our results

using different evaluation metrics. For each step, we utilized different concepts and

techniques. In this chapter, these techniques and concepts are explained.

3 .1 preprocessing

As mentioned in the previous chapter, one dilemma of previously developed systems

is their numerous preprocessing steps. We minimized preprocessing to background

removal. Instead of using the same simple thresholding as previously developed

systems, which did not have perfectly cleaned results, we used K–means clustering

algorithm to remove the backgorund. K–means clustering algorithm is explained

in the following subsection. In order to overcome the need for high–guality, high–

resolution images, we grayscaled and dowsized the [1936 × 2592] RGB images to

[128 × 128] distorted low–quality grayscaled images after background removal by K–

means clustering algorithm.

3 .1 .1 K–means

Accurate and efficient background removal is critical for our insect identification

research, because the blue background and the white test standard may interfer with

the useful body information of kissing bugs. K–means clustering algorithm is the

most common algorithm for background removal in many different applicational

purposes such as human face and object recognition [51]. K–means is the simplest

clustering (unsupervised classification) algorithm that groups data points based on

their Euclidean distance from each other. By applying K–means clustering we isolate

backgound and test standard object to separate groups from insect’s body and remove

them from the image. The flowchart of K–means clustering algorithm is shown in
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Figure 3.1 [52]. The background and test standard will be zeroed after K–means

algorithm ends.

F igure 3 .1 : K–means clustering flowchart

3 .2 feature extraction

We utilize PCA as our feature selection algorithm. PCA is a standard technique used

in statistical pattern recognition and signal processing for data reduction and feature

extraction [53]. As the data often contains redundant information, mapping it to

a feature vector can eliminate this redundancy and preserve most of the intrinsic

information content of the data.

PCA is an efficient technique for extracting an optimal feature vector from high–

dimensional data sets [54]. PCA transforms the data set to a new set of ordered

orthogonal variables called principal components based on their variances. It extracts

the eigenvectors that are associated with the largest eigenvalues from the input distri-

bution. PCA solves the image identification problem within a representation space of

lower dimension than image space.

A kissing bug image in 2–dimensions with size N × N can also be considered as

a one dimensional vector of dimension N2 [55]. For example, original kissing bug

image from our database with size 128 × 128 can be considered a vector of 16, 384,

or equivalently a point in a 16, 384 dimensional space. Since the images of kissing

bugs have similarities, they are not going to be randomly distributed in this high–
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dimentional image space. Therefore, they can be described by a rather low–dimentinal

subspace.

The basic idea of the principal components is to find the best orthogonal vectors

that represent the distribution of kissing bug images in the whole image space. These

vectors define the subspace of images. Each of these vectors is of length N2, describes

an N × N image, and is a linear combination of the original kissing bug images. In

the following subsections, the covariance matrix, eigenvectors and eigenvalues, and

PCA are described in detail.

3 .2 .1 Covariance Matrix

In practical pattern recognition problems, there is usually more than one feature

available [56]. During the statistical analysis of the data, we have to find out whether

these features are independent of one another. Otherwise there exists a relationship

between each pair of features. Suppose you extract two features X and Y from a large

set of images, to understand whether there exists any relationship between these two

features, we have to compute how much the first feature X of each of the patterns

in our data set varies from the mean of the second feature Y. This measure, which is

computed similar to the variance is called covariance and is always measured between

two features. The covariance is computed as follows:

Cov(X, Y) =
n

∑
i=1

(Xi − X)(Yi − Y) (3.1)

where n is the number of patterns, and X and Y are the mean of feature X and Y

respectively. If the covariance value is positive, it implies that when one feature (X)

increases, the other feature (Y) also increases. If the value of Cov(X, Y) is negative,

then as one feature increases, the other one decreases. If there is no correlation

between the two features X and Y the covariance becomes zero, indicating that the

two features are independent of each other.

In the case of a multi-dimensional feature vector, the covariance is measured be-

tween each pair of features. In practical pattern recognition problems, we compute a
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covariance matrix where each element of the matrix gives a measure of the covariance

between two features.

3 .2 .2 Eigenvectors and Eigenvalues

Before we discuss principal component analysis we will briefly explain the concept of

eigenvectors and eigenvalues of a matrix [56]. Let us assume that we have a square

matrix A of dimension n × n, which when multiplied by a vector X of dimension

n × 1 yields another vector Y of dimension n × 1, which is essentially the same as the

original vector X that was chosen initially. Such a vector X is called an eigenvector

which transforms a square matrix A into a vector, which is either the same vector X

or a multiple of X (i.e., a scaled version of the vector X). The matrix A is called a

transformation matrix, while the vector X is called an eigenvector. As is well known,

any integer multiplication of the vector results in the same vector pointing to the same

direction, with only its magnitude being scaled up (i.e., the vector is only elongated).

Eigenvectors can be determined only from the square matrices, while every square

matrix does not necessarily yield an eigenvector. Also, an n× n square transformation

matrix may have only n number of eigenvectors. All these eigenvectors are orthogonal

to each other. Every eigenvector is associated with a corresponding eigenvalue. The

concept of an eigenvalue is that of a scale which when multiplied by the eigenvector

yields the same scaled vector in the same direction.

3 .2 .3 Principal Component Analysis

While computing the principal component analysis [56] we represent an N × N image

as a one-dimensional vector of N2 elements, by placing the rows of the image one

after another, and then stacking the acquired vectors in rows on top of each other in

a dataset. Then we compute the covariance matrix of the entire data set. Next, we

compute the eigenvalues of this covariance matrix. The eigenvectors corresponding

to the most significant eigenvalues will yield the principal components. To get the

original data back we have to consider all the eigenvectors in our transformation.

If we discard some of the less significant eigenvectors in the final transformation,
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then the retrieved data will lose some information. However, if we choose all the

eigenvectors we can retrieve the original data.

A simple example of PCA for a multivariate gaussian distribution is shown in

Figure 3.2. The vectors shown are the eigenvectors of the covariance matrix scaled by

the square root of the corresponding eigenvalue and shifted, so their tails are at the

mean.

F igure 3 .2 : PCA of a multivariate Gaussian distribution centered at (1,3) with a
standard deviation of 3 in roughly the (0.866, 0.5) direction and of 1 in the orthogonal
direction.

3 .3 feature selection

Feature selection is applied on PCA feature set. Although PCA is an effective algo-

rithm for finding orthogonal features, extracting too many eigenvectors might result

in extracting redundant features. Therefore, a feature selection algorithm will be

applied to optimize the feature set.

There are different arrtibute selection filters in Weka which examine attributes

based on different criterias such as Correlation based Feature Selection, GainRatio

Attribute evaluation and InformationGain Attribute evaluation.
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Correlation–based attribute selection methods evaluate the attributes with respect

to the target class. Pearson’s correlation techniques is utilized to measure the cor-

relation between each attribute and the target class. GainRatio Attribute evaluation

method measures the significance of attributes with respect to target class on the basis

of gain ratio. Gain Ratio is computed by the following equation where H represents

the Entropy.

GainR(Class, Attribute) =
(H(Class)− H(Class|Attribute))

H(Attribute)
(3.2)

Finally, Information Gain Attribute evaluation method measures the significance

of attribute by the information gain factor calculated with respect to target class.

Information gain is computed by the following equation where H represents the

Entropy.

In f oGain(Class, Attribute) = H(Class)− H(Class|Attribute) (3.3)

CfsSubsetEvaluator is an attribute (feature) selection filter. It evaluates the value of

a subset of attributes by considering the individual predictive ability of each feature

along with the degree of redundancy between them. The highly correlated subsets

of feature with the class with low intercorrelation are preferred and selected. Best-

First algorithm uses a greedy hillclimbing with backtracking search algorithm to

explore different subset of features in the space. BestFirst module is consists of two

submodules: attribute evaluator and search method. Each submodule has multiple

techniques as options. The attribute evaluator is the technique by which each attribute

in the dataset is evaluated in the context of the output variable (e.g., the class). The

search method is the technique by which to try or navigate different combinations of

attributes in the dataset to arrive at a short list of chosen features.

3 .4 data balancing

Traditional data mining methods assume a balanced distribution of classes. Several

real data sets suffer from class–imbalance problem where it has a rare positive ex-
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ample but many negative ones. For example, when learning from the results of a

medical test the vast majority of instances have a negative outcome and only a few

return positive. Some machine learning algorithms will learn to ignore the minority

class and classify all cases into the majority class because this will trivially yield high

classification accuracy. In other words, many classification algorithms are vunarable

to unbalanced data and their performance severaly drops in presenece of imbalanced

dataset. There are different data balancing techniques that aim at addressing this

data problem. the two most common techniques for overcoming this problem are

undersampling of the majority class and oversampling of the minority class [57].

3 .4 .1 Undersampling the majority class

In the case of having large datasets with a lot of data points, getting rid of some

data points in majority classes not only does not cause any harm for classification

process, but also helps in increasing the performance of the classification algorithm

by balancing the data in different classes. Two instance–based Weka filters can be

used to implement the undersampling of the majority class called “Resample” and

“SpreadSubsample” filters. The following expression is utilized in the Resample

module for determining the number of instances to sample for particular class i:

sampleSize =
m_SampleSizePercent

100.0
×

((1 − m_BiasToUni f ormClass)× numInstancesPerClass[i]+

m_BiasToUni f ormClass ×
numO f Instances

numActualClasses
))

(3.4)

Where numOfInstances gives the total number of instances in the dataset, numIn-

stancesPerClass[i] holds the number of instances in class i and numActualClasses corre-

sponds to the number of classes that occur in the dataset (some declared classes in

an ARFF file might not have any samples in the data). Therefore, to undersample the

majority class in the way that both classes have the same number of instances, the

configuration values of the filter are biasToUniformClass=1.0 and sampleSizePercent=X,

where X/2 is nearly the percentage of data that belongs to the minority class. We also
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need to configure the filter to perform sampling without replacement by applying

noReplacement=true. SpreadSubsample is a much easier way to achieve the same effect.

Only the ’M’ parameter, which is a distribution spread, needs to be set to 1.0.

3 .4 .2 Oversampling the minority class

In the case of having samll datasets with few data points, undersampling is harmful

for the overall classification process. Therefore, instead of getting rid of data points,

data regenarating techniques (oversampling techniques) should be considered to bal-

ance the data through increasing the dataset size. In order to oversample the minority

class in the way that both classes have the same number of instances, the configuration

values of the Weka Resample filter are noReplacement=false, biasToUniformClass=1.0,

and sampleSizePercent=Y, where Y/2 is nearly the percentage of data that belongs to

the majority class. We utilize this method as a preprocessing filter before classification

phase to increase the overall number of instances in our insect image dataset and

balance the number of images per class [58].

3 .5 classification

We apply different data mining based and deep learning based algorithms for clas-

sification. These algorithms are; Decision Tree (DT), Random Forest (RF), Support

Vector Machine (SVM), and deep neural networks. These algorithms are explained in

following subsections.

3 .5 .1 Decision Tree

A DT is a decision support system that uses tree-like graph decisions and possible

after–effects, including chance event results, resource costs, and utility. A Decision

Tree, or a classification tree, is used to learn a classification function that concludes

the value of a dependent attribute (variable) given the values of the independent

(input) attributes (variables) [59]. The DT algorithms classify the examples by sorting

them down the tree starting from the root node to some leaf/terminal node. The

leaf/terminal node is providing the classification of the example. The process is
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recursive and will repeat for every subtree rooted at the new node. You can see

the simple description ofthe basic concept of the decision tree in Figure 3.3.

F igure 3 .3 : Basic DT concepts. Note: Node A is parent of Nodes B and C.

Decision trees are very reliable approaches in knowledge discovery and data min-

ing. They are capable of processing large and complex masses of data and discover

useful patterns. Decision trees are highly effective tools in many areas such as data

and text mining, information extraction, machine learning, pattern recognition, and

also bug recognition [60].

3 .5 .2 Random Forest

The RF classifier is an ensemble classification method that works by generating several

decision trees from bootstrap samples of the training data. Each tree votes for the most

popular class to classify an input vector [61]. It is a combination of tree predictors in

which decision trees are constructed using resampling technique with replacement,

the inducers randomly samples the attributes and chooses the best split among those

variables rather than the best split among all attributes [62]. The main steps of

Random Forest are described in Table 3.1.
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Table 3 .1 : Algorithmic steps of Random Forest.

Inputs: DTI (a decision tree inducer), T (the iterations numbers), S (train sets),

r (sampling ration), N (number of attributes used in each tree)

Train: for i = 1 to T

Get sample St from S with replacement using r;

Build classifier Mt based on the inducer randomly samples N

of the attributes and choose the best split

Classification: : new instance classified by classifiers Mt(t=1,...,T)

then performed using majority vote.

The assignment of class label of an unknown instance is performed using majority

voting strategy. Each tree votes for the most popular class to classify an input vector.

The output of the classifier is chosen by taking the majority voted class from all the

trees in the forest. The process of majority voting is shown in Figure 3.4 [63].

F igure 3 .4 : Example of majority voting on the final class in RF.

RF is computationally less intensive than other ensemble approaches. It is robust

to noise and outliers and can handle many input variables without overfitting. Due
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to the important advantages such as handling very large number of input attributes

and low time cost, RF is widely used in image classification research.

3 .5 .3 Support Vector Machine

Although SVM was proposed by Vapnik in the late 1960s, it has not received sig-

nificant attention until recent years when it has become a promising estimator in

data–driven fields. SVM is a supervised method to perform dichotomy classification

of multidimensional feature–vectors [64]. SVM is a discriminative classifier that gener-

ates a hyperplane that separates the data points into two classes with maximal margin

[65]. The margin is defined as the distance between hyperplane and nearest points.

The best hyperplane with largest margin is usually selected.

The original algorithm was developed as a linear classifier (See Figure 3.5 [65])

which was not efficient to provide a good discrimination between classes because

many datasets demonstrate complex structure. Therefore, it was generalised to a non–

linear classifier using several non–linear kernel functions (e.g. polynomial, hyperbolic

tangent (sigmoid) and radial basis function (RBF)).

F igure 3 .5 : An example of a separable problem in a 2 dimensional space. The
support vectors which are marked with grey squares, define the the largest margin of
separation between the two classes.

The basic idea of SVM method is to transform the input features into a higher–

dimensional space so that the two classes are linearly separated by a high–dimensional



36

surface, known as hyper–plane [64]. Given a training dataset {xn}N
n=1 with N samples,

where x ∈ R
L is a vector of L input–features, and its corresponding known output–

features {yn}N
n=1 , with yn ∈ {−1, 1}, the SVM model is defined then as:

f (x) = wTφ(x) + b (3.5)

where φ : x → φ(x) ∈ R
L is any non–linear function that maps the input data

into the high–dimensional feature space with H ≥ L. Originally, assuming linearly

separable features, this function was trivially defined as φ(x) = x. The unknown

parameters of the model are w, a weight vector which is normal to the hyper–plane

and b, the hyper–plane bias.

The SVM model is defined then to cope with nonseparable features by allowing

misclassification errors. Therefore, the SVM model presented above is subject to the

following constrains:

yn − f (xn) ≤ ζn + ε

f (xn)− yn ≤ ζ∗n + ε

ε, ζn, ζ∗n ≥ 0, ∀n

(3.6)

where ε is the (in) sensitivity, i.e. the maximum misclassification error allowed

and {ζn, ζ∗n}
N
n=1 are slack variables quantifying the output–features deviation from

the positive and negative classes.

The optimisation of the previous model, subject to the soft–margin constrain,

defines a hyper–plane which separates the training data with the maximum margin.

The optimisation problem can be solved by using the Lagrange multipliers method,

(for details see [66]), yielding to the next cost function:

L({an, a∗n}
N
n=1) = −

1
2

N

∑
i,j=1

(ai − a∗i )(aj − a∗j )K(xi, xj)− ε
N

∑
i=1

(ai + a∗i ) +
N

∑
i=1

(ai + a∗i )yi

(3.7)
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where {an, a∗n}
N
n=1 are the Lagrange multipliers and K(xi, xj) is the Kernel function,

defined as the inner product of the transformed input–feature vectors:

K(xi, xj) :=< φ(xi)|φ(xj) > (3.8)

The optimisation of this cost function is significantly simplified by introducing the

kernel notation. Instead of designing a mapping function, then transform the data

and later compute the inner products, the SVM approach directly defines the kernel

as a function of the input–feature vector. Some kernel functions typically considered

on SVM applications are shown below:

Klinear(x, x
′
) = x.x

′

Kpolynomial(x, x
′
) = (γxx

′
+ r)ρ

KRBF(x, x
′
) = exp(−γ||x − x

′
||2)

Ksigmoid(x, x
′
) = tanh((γxx

′
+ r))

(3.9)

Once we estimate {ân, â∗n}
N
i=1 by maximising the cost function defined above, the

margin can be inferred as:

Ŵ =
N

∑
n=1

(ân − â∗n)φ(xn) (3.10)

such as f(x) can be directly estimated as:

f̂ (x) =
N

∑
n=1

(ân − â∗n)K(xi, x) + b̂ (3.11)

where the computation of b̂ can be conveniently dropped out by preprocessing

and centralising the data, forcing the bias to be zero. An example of non–linear SVM

classification with kernel is shown in Figure 3.6 [67].
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F igure 3 .6 : Graphical representation of the SVM classifier with a non–linear
kernel, (a) complex binary pattern classification problem in input space, and (b) non–
linear mapping into high–dimensional feature space where a linearly separable data
classification takes place.

3 .5 .4 Convolutional Neural Networks

Artificial neural networks (ANNs) are the key building blocks for modern computer

vision systems [68]. ANNs consist of a collection of “neurons” (i.e., nodes) and edges

that connect these neurons. If there is a connection between two neurons, then the

first neuron’s output serves as input for the second neuron. Every connection has

an associated weight that signifies the relative importance of the input. A neuron

performs a computation on the weighted sum of its inputs. This computation is

known as an activation function—for instance, a commonly used activation function is

the Rectified Linear Unit (ReLU), which applies the transformation f (x) = max(0, x)

(equivalent to replacing negative values with 0). The output of the neuron is then

passed along to the other neurons to which it is connected. The neural networks

used in computer vision are generally feed forward networks, whereby neurons are

arranged in layers, and all connections flow in a single (forward) direction. In other

words, neurons in the same layer have no connections with one another. Instead,

they only have connections with neurons in adjacent layers, receiving inputs from

the preceding layer, and sending outputs to the following layer. The most commonly

used type of feed-forward ANN is the multilayer perceptron, also known as a fully
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connected layer. As its name suggests, every neuron in a fully connected layer has

connections to every neuron in the preceding layer.

The currently best–performing algorithms for feature extraction and image clas-

sification use convolutional neural networks (CNNs) [69, 70]). CNNs build upon

ANNs by including layers that perform convolution operations, which serve to extract

features from input images. Any image can be represented as a matrix of pixel values.

Convolution operations use these pixel values to calculate new values using element–

wise matrix multiplication with a small matrix (aka a “filter” or “kernel”) that sweeps

over original image pixel values (Figure 3.7 [68]). Then, the sums of the element–wise

multiplications form the elements of a new matrix of convolved features (also known

as an “activation map” or “feature map”).

As convolution operations are linear, a ReLU layer is usually applied following

convolution in order to introduce non–linearity into the network. This step is impor-

tant because a simple linear function is limited in its ability in capturing complex

mappings between the input (images) and output (classes). Although other non-

linear activation functions exist, ReLU has been shown to perform better in most

situations [71]. Following the convolution and ReLU layers are pooling layers that

are used to perform downsampling (i.e., dimension reduction), removing extraneous

features while retaining the most relevant information. Commonly used pooling

operations include max pooling (whereby the highest value in a neighborhood of

pixels is retained, and all others discarded) and average pooling (whereby the average

of all values in a neighborhood of pixels is calculated and retained).

An image can be represented as a matrix of pixel (px) values. At part(a) of the

figure we have a 4px by 4px image represented as a 4 × 4 matrix. We use an example

filter, or kernel, that is represented by the 2 × 2 matrix shown. In part(b) Convolution

is performed by sweeping the filter across the image and summing the resulting

values from element–wise multiplication of the values of the image matrix that the

filter overlaps with the corresponding filter values. Then, the sum values are saved to

a new matrix that has one entry for every step of the convolution process. The stride

value of 1px is used in this process. It means that the filter moves 1px in each step.

This is repeated until the filter has been passed over the entire image. In part(c) the
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F igure 3 .7 : Example of how convolution is performed in a convolutional neural
network.

resulting matrix of sums is the convolved feature, also known as an “activation map”

or “feature map”.
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Combining, the convolution, ReLU, and pooling layers comprise the feature ex-

traction portion of the CNN, producing the high–level features that are then used to

perform classification. The values computed by the network are then processed using

fully connected layers, generating a vector of probabilities reflecting the probability

that a given image falls in any given class. This complete process (from input to

feature extraction to classification) is known as forward propagation [68].

The training set provides CNN with known examples of the correct mapping

between image values and weights and the final classification (i.e., the true probability

vector). When CNN is initialized, all weights and filters are randomly assigned. The

network then takes the input images and runs the first forward propagation step. As

the weights and filters are random at this point, the output is a vector of random

class probabilities for each image. The total error (i.e., the sum of the differences

between the true probability vector and the output probability vector) is calculated.

The network then performs back propagation, which is the process of updating all the

weights and filters using gradient descent to minimize the total error. One complete

forward propagation and back propagation of the entire data set is called an epoch.

Ideally, all images would be passed through the neural network at once to result

in the most accurate back propagation updates. However, in practice this is computa-

tionally intractable, and the data must be broken up into separate smaller batches to

feed into the network. In general, the larger the batch size the better training process.

However, the maximum batch size is limited by the amount of memory available to

hold all of the data at once. The number of batches required to complete a single

epoch is called the number of iterations. For example, a data set containing 1,000

images could be split into five batches of 200 images. Training a CNN using this data

set would then take five iterations to complete one epoch. The number of epochs

required to train a network adequately is variable and depends on the characteristics

of the data set and the parameters associated with the gradient descent algorithm

being used [68].

By updating weights and kernels in the back propagation to reduce classification

error, the network learns how to classify the training images accurately, building an

association between a particular collection of weights and kernels and a particular
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output class. The best performing model is then used to classify the images in the

validation data set. The performance of the model on the validation set gives us an

idea of how well the model performs and what sort of accuracies we might expect if

the model was used to classify entirely novel images. Model performance is evaluated

by looking at validation accuracy (i.e., the proportion of images in the validation set

that is correctly identified by the trained model) and validation loss (i.e., the sum of

errors for each image in the validation set, where the error is determined by a loss

function such as cross-entropy).

3 .5 .5 VGG16

The 16–layer VGG16 (named after the Visual Geometry Group at Oxford University)

CNN [72] is a commonly used image classification neural network. Although VGG16

is a relatively shallow network, its development was critical in showing that, in

general, the deeper a neural network (i.e., the more layers it contains), the more

accurate its performance. However, training difficulty and computational costs (i.e.,

time) increase with neural network depth. The structure and architecture map of

VGG16 are shown in Figures 3.8 and 3.9 respectively.

F igure 3 .8 : VGG-Net-D (VGG16) – convolutional neural network for image
classification
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F igure 3 .9 : VGG-Net-D (VGG16) – Architecture map

3 .5 .6 ImageNet checkpoint

ImageNet is a dataset of over 15 million labeled high–resolution images belonging

to roughly 22, 000 categories. The images were collected from the web and labeled

by human labelers using Amazon’s Mechanical Turk crowd-sourcing tool. Starting in

2010, as part of the Pascal Visual Object Challenge, an annual competition called the

ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) has been held. ILSVRC

uses a subset of ImageNet with roughly 1000 images in each of 1000 categories. There

are approximately 1.2 million training images, 50, 000 images for validation, and

150, 000 images for testing. ImageNet is widely used for deep neural networks via

the concept of transfer lerning explained in the next subsection. In Figure 3.10 some

class samples of ImageNet dataset are shown.
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F igure 3 .10 : Some sample classes of ImageNet dataset

3 .5 .7 Transfer Learning

One technique that eases the computational burden and allows for robust models to

be trained using relatively small data sets is transfer learning. Transfer learning uses

weights from a model previously trained using another data set on a new task; these

weights are “frozen” in the new model so that they are not trainable, thus reducing

the number of parameters that must be estimated [68]. New images are then used

only to train the unfrozen layers at the end of the CNN to fine–tune the model to

the task at hand. This approach can be an efficient and effective strategy when one

does not have a huge data set to train a CNN from scratch. For example, ImageNet

has been used to train many CNNs, and the resulting weights are freely available.

Transfer learning allows accurate models to be trained with hundreds to thousands,

rather than millions of images.
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3 .6 evaluation metrics

To evaluate the performance of our classifiers, we used several known common met-

rics. These metrics are explained in this section. There are four basic terms we need

to know that are used in computing many evaluation measures [73].

• True Positives (TP): These refer to the positive samples that were correctly

labeled by the classifier as possitive.

• True Negatives (TN): These refer to the negative samples that were correctly

labeled by the classifier as negative.

• False Positives (FP): These refer to the negative samples that were incorrectly

labeled by the classifier as possitive.

• False Negatives (FN): These refer to the positive samples that were incorrectly

labeled by the classifier as negative.

These terms are summerized in the confusion matrix of Figure 3.11 [73].

F igure 3 .11 : Confusion matrix, shown with totals for positive and negative
samples.

A confusion matrix is a useful tool for analyzing how well a classifier can recognize

samples of different classes. Values TP and TN tell us when the classifier is getting

things right, while FP and FN tell us when the classifier is getting things wrong (i.e.,

mislabeling). Given m classes (where m ≥ 2), a confusion matrix is a table of at least

size m by m. An entry, CMi,j in the first m rows and m columns indicate the number

of samples of class i that were labeled by the classifier as class j. For a good classifier

with high accuracy, most of the samples would be represented along the diagonal

of the confusion matrix, from the entry CM1,1 to entry CMm,m, while the rest of the
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entries are zero or close to zero. Therefore, FP and FN will be around zero. The

table might have additional rows or columns to provide total values. For example, in

the confusion matrix of Figure 3.11, P and N are shown. P is the number of positive

samples and N is the number of negative samples. Also, P
′

is the number of samples

that were labeled as positive (TP + FP) and N
′

is the number of samples that were

labeled as negative (TN + FN). The total number of samples is TP + TN + FP + TN,

or P + N, or P
′
+ N

′
. Note that although the confusion matrix shown is for a binary

classification problem, confusion matrices can be easily similarly drawn for multiple

classes. The evaluation metrics used in our research are accuracy–based measures

such as precision, recall, f–measure, and accuracy. These measures are meaningful

combinations of confusion matrix basic terms.

3 .6 .1 Precision

Precision can be thought of as a measure of exactness (i.e., what percentage of samples

labeled as positive are actually such). It is defined as Equation 3.15.

precision =
TP

TP + FP
(3.12)

A perfect precision score of 1.0 for a class C means that every sample that the

classifier labeled as belonging to class C does indeed belong to class C. However,

it does not tell us anything about the number of class C samples that the classifier

mislabeled.

3 .6 .2 Recall

Recall is a measure of completeness (what percentage of positive samples are labeled

as such). It is defined as Equation 3.13.

recall =
TP

TP + FN
=

TP

P
(3.13)

A recall is the same metric as sensitivity or true positive rate (TPR). A perfect recall

score of 1.0 for class C means that every item from class C was labeled as such, but
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it does not tell us how many other samples were incorrectly labeled as belonging to

class C. There tends to be an inverse relationship between precision and recall, where

it is possible to increase one at the cost of reducing the other. Therefore, precision and

recall scores are typically used and reported together.

3 .6 .3 F–measure

An alternative way of utilizing precision and recall is to integrate them into a single

measurement. This approach is called the F measure (also known as the F1 score or

F–score). It is defined as Equation 3.14.

F =
2 × precision × recall

precision + recall
(3.14)

The f–measure is the harmonic mean (average) of the precision and recall factors.

It gives an equal weight to precision and recall values.

3 .6 .4 Accuracy

On a given test set, the accuracy of a classifier is the percentage of test set samples

that are correctly classified by the classifier. That is,

accuracy =
TP + TN

P + N
(3.15)

3 .7 cross validation

In k–fold cross–validation the initial data are randomly divided to k mutually exclu-

sive subsets, or “folds”, D1, D2, ..., Dk, i = 1...k each of nearly equal size. Training

and testing are performed k times. In iteration i, partition Di is reserved as the test

set, and the remaining partitions are collectively used to train the model. That is, in

the first iteration, subsets D2, ..., Dk, i = 2...k collectively serves as the training set to

obtain a first model, which is tested on D1; the second iteration is trained on subsets

D1, D3, ..., Dk, i = 1, 3...k and tested on D2; and so on. In k–fold cross–validation,

each sample is used the same number of times for training and once for testing. For
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classification, the accuracy measurement is the overall number of correctly classified

samples from the k iterations, divided by the total number of samples in the initial

data.

Leave–one–out is a special case of k–fold cross–validation where k is set to the

number of initial samples. It means that only one sample is “left out” at a time for the

test set. In cases that the number of samples is few and we need to get the most out of

our dataset to train the classifier, this method is used. In this work, we used 10–fold

cross–validation for our evaluations to get unbiased results. It means in 10 different

iterations, 90% of images are used in training, and 10% of samples are used in testing

the classifier.

3 .8 model comparison using statistical tests of

significance

Suppose that two classification models are being generated from the data and are

named M1 and M2. The 10–fold cross–validation is performed to obtain a mean

error rate for each. It is possible to have considerable variance between error rates

within any given 10–fold cross–validation experiment. Although the mean error rates

obtained for M1 and M2 might seem different, the difference may not be statistically

significant. To determine if there is any “real” difference in the mean error rates of

two models, we need to employ statistical significance. Also, we want to obtain some

confidence limits for our mean error rates.

For a given model, the individual error rates calculated in each round of 10–fold

cross–validation may be considered different, independent samples from a probability

distribution. In general, they follow a t–distribution with k − 1 degrees of freedom

where, here, k = 10. (This distribution looks very similar to a normal, or Gaussian,

distribution even though the functions defining the two are quite different. Both are

unimodal, symmetric, and bell–shaped). This approach allows us to do hypothesis

testing where the significance test used is the t–test or Student’s t–test. We hypoth-

esize that the two models are the same, or in other words, that the difference in the

mean error rate between the two is zero. If we can reject this hypothesis (referred to
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as the null hypothesis) we can conclude that the difference between the two models

is statistically significant and we can select the model with the lower error rate.

In data mining practice, we may often employ a single test set; that is, the same

test set can be used for M1 and M2. In such cases we make a pairwise comparison of

the two models for each 10–fold cross–validation round. That is, for the ith round of

10–fold cross–validation, the same cross–validation partitioning is used to obtain an

error rate for M1 and M2. Let err(M1)i (or err(M2)i) be the error rate of model M1 (or

M2) on round i. The error rates for M1 are averaged to obtain a mean error rate for

M1, denoted err(M1). Similarly, we can obtain err(M2). The variance of the difference

between the two models is denoted var(M1 − M2). The t–test computes the t–statistic

with k − 1 degrees of freedom for k samples. In our example, we have k = 10 since,

here, the k samples are our error rates obtained from ten 10–fold cross–validations

for each model. The t–statistic for pairwise (paired t–test) comparison is computed as

follows:

t =
err(M1)− err(M2)

√

var(M1−M2)
k

(3.16)

where

var(M1 − M2) =
1
k

k

∑
i=1

[err(M1)i − err(M2)i − (err(M1)− err(M2))]
2 (3.17)

To determine whether M1 and M2 are significantly different, we compute t and

select a significance level (sig). In practice, a significance level of 5% or 1% is typically

used. We then look in the standard t–distribution table, available in statistics text-

books. This table is normally arranged by degrees of freedom as rows and significance

levels as columns. Suppose we want to make sure whether the difference between

M1 and M2 is significantly different for 95% of the population, that is, sig = 5% or

0.05. We ought to find the t–distribution value related to k − 1 degrees of freedom

(or 9 degrees of freedom for our example) from the table. However, because the t–

distribution is symmetric, typically only the top percentage points of the distribution
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are shown. Therefore, we look up the table value for z = sig/2, which in this case, is

0.025, where z is also referred to as a confidence limit. If t > z or t < −z, then our

value of t lies in the rejection region, within the distribution’s tails. This means that we

can reject the null hypothesis that the means of M1 and M2 are the same and conclude

that there is a statistically significant difference between the two models. Otherwise,

if we cannot reject the null hypothesis, we find that any difference between M1 and

M2 can be attributed to chance [73].
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chapter 4

Proposed Frameworks

As mentioned before, one major constraint of previous automatic systems is their

need for high–quality images, which is not practical, especially when working with

a lower resolution cell phone captured images with not much of perfect lighting

and uniformity in the setting. Our proposed methods overcome this shortcoming

by grayscaling and downsizing reference RGB images to 128 × 128 grayscale images

to perform feature extraction easier and faster.

The previous automatic systems extracted geometrical features that need several

preprocessing steps using different image filtering and morphological operations like

lens distortion correction, background removal, specimen’s body edge identification,

clipping the legs and antennas from the image, and smoothing the clipped edge before

feature extraction. We minimized the preprocessing to only background elimination

operation.

Lastly, the accuracy of 80–88% of currently developed methods leaves room for

improvement. We improved accuracy by utilizing different state–of–the–art feature

extraction and classification algorithms. Instead of extracting ten geometrical features,

we used PCA to extract the best 50 and 150 scattered variance–based features from

images. We also applied feature selection and oversampling techniques before clas-

sification. For classification, we utilized and personalized DT, RF and SVM mining

algorithms. We also applied deep neural networks, which does not need the feature

extraction and feature selection phases before classification.

We used 10–fold cross–validation in training and testing steps of our classifiers to

get robust unbiased results. We evaluated our results by reporting precision, recall,

and f–measure identification factors. We also performed a paired t–test exam to assess

the statistical independence of classification models. In the following sections, these

steps, along with the dataset description, are explained in detail.
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4 .1 dataset

As mentined, because of the nature of kissing bugs and limitations in gathering

many benign and infectious vectors, there is a shortage of sufficient sets of images

in this field. The available ones are rather small datasets. Due to this shortage, in

this research, we used the same dataset of images provided by Gurgel et al. [50]

consisting of 2030 insect photos; to be able to compare the accuracy rates. Brazilian

species belong to 6 different families of Triatomine bugs called Cavernicola, Eratyrus,

Panstrongylus, Psammolestes, Rhodnius, and Triatoma; and Mexican species belong

to 2 different families called Panstrongylus and Triatoma. The overall number of

species is 51 classes composed of 39 Brazilian and 12 Mexican species. The number of

images varies from 13 to 89 per class. The total number of 2030 images consisting of

1620 Brazilian and 410 Mexican species. In Figure 4.1 one vector sample from each 12

Mexican classes and in Figures 4.2 and 4.3 one vector sample from each 39 Brazilian

classes are shown.

4 .2 preprocessing

Several preprocessing steps of reference methods are reduced to one background

removal step to reduce computational complexity and time consumption of this phase.

After that, by grayscaling and downsizing the image we train our system to work with

low–resolution, low–quality images and make it robust to this weakness. First, the

background (blue background color along with size standard white circle) is separated

from the foreground (insect’s body) using image segmentation K–means clustering

method in Matlab and foreground is contoured to define a rectangle around bug’s

body, and the image is cropped afterward. In the next step, the image is grayscaled

and downsized from 1936 × 2592 RGB images to 128 × 128 grayscale images. Prepro-

cessing steps and results for one Brazilian vector are shown in Figure 4.4.
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F igure 4 .1 : Mexican dataset samples. 12 classes of Panstrongylus and Triatoma
bugs.
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F igure 4 .2 : Part 1 of Brazilian dataset samples. 20 classes consisting of Cavernicola,
Eratyrus, Panstrongylus, Psammolestes, Rhodnius, and Triatoma bugs.
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F igure 4 .3 : Part 2 of Brazilan Dataset. 19 classes of Triatoma bugs.
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F igure 4 .4 : Summary of preprocessing Steps for an example Brazilian image of
Triatoma guazu (1) Raw image (2) cropped image (3) background removed image (4)
gray–scaled down–sized image

4 .3 feature extraction

We utilized PCA for feature extraction. In two different experiments, 50 and 150

features were extracted using the PCA algorithm. After rearranging [128 × 128]

grayscale images into vectors of 16, 384 elements, we stacked them in a matrix named

“imageVectors”of size [1620 × (16384 + 1)] (the last column is for class label). Then

imageVectors matrix was normalized using the following method (Table 4.1):

Table 4 .1 : Max/Min normalization before applying PCA.

Step 1: min = overall minimum of imageVectors matrix

Step 2: max = overall maximum of imageVectors matrix

Step 3: normalized–Matrix = (imageVectors - min)/(max - min)

After that, the normalized–matrix is fed to PCA. The covariance matrix is com-

puted and eigenvector and eigenvalues are extracted from the conaviance matrix on

descending order. In the first experiment, we selected a featureVector of 50 eigen-

vectors corresponding to 50 largest eigenvalues, and in the second experiment we

selected a featureVector of 150 eigenvectors corresponding to 150 largest eigenvalues.

The two feature vectors were multiplied by the normalized data matrix and exported
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as PCAData50 and PCAData150, respectively. We then normalized feature vectors

using the same max/min normalization method (Table 4.1) to prepare it for the

classification phase. Since the next steps are performed in Weka, Matlab matrix files

(i.e., “.mat” files) are converted to ARFF files suitable for processing in Weka. We then

utilize the Weka software for the rest of the steps.

4 .4 feature selection

We applied Weka’s attribute selection filter on ARFF files to optimize the number of

features for Mexican and Brazilian datasets separately before applying classification

algorithms. We chose “CfsSubsetEvaluator” as the attribute evaluator algorithm and

“BestFirst” algorithm as the search method. CfsSubsetEvaluator evaluates the worth

of a subset of attributes by considering the individual predictive ability of each fea-

ture along with the degree of redundancy between them. Subsets of features that

are highly correlated with the class while having low intercorrelation are preferred.

BestFirst algorithm searches the space of attribute subsets by greedy hillclimbing

augmented with a backtracking facility.

With trial and error, the optimal configuration values for CfsSubsetEvaluator (pool-

Size3 = 8 and numThreads = 8, ≥ size of thread pool) and BestFirst (direction = forward

and searchTermination4= 5) search method are achieved and applied.

4 .5 data balancing

We oversampled our dataset using Weka “Resample” technique with proper config-

uration (noReplacement = false, biasToUniformClass = 1.0, and sampleSizePercent = 200).

After oversampling we balanced our feature datasets as much as possible using Weka

“ClassBalancer” filter with number of discretization intervals = 20.

ARFF data file sizes are almost doubled up from 1620 rows to 3237 rows for

Brazilian and from 410 rows to 816 rows for Mexican datasets using oversampling

data technique; and the 150–features are reduced to 125 for Brazilian, and 132 for

3The size of the thread pool, for example, the number of cores in the CPU
4specifies the number of consecutive non–improving nodes to allow before terminating the search
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Mexican species; and the 50–features are reduced to 29 for Brazilian and 32 for

Mexican datasets using attribute Selection technique. After the feature selection and

data balancing steps, classification algorithms were applied to the processed feature

datasets.

4 .6 classification

We utilized DT as our test base algorithm for classification phase. We compared other

classification algorithms’ results with Weka implementation of DT called J48. We also

utilized the Weka implelemtation of RF and Compare our acquired results of DT with

it. The third utilized classification algorithm is Weka implementation of SVM for

multiclasses (more than two class) called SMO.

After feature extraction and data balancing steps, the dataset is ready for the

classification stage. We applied three different supervised classifications of DT (called

approach 1), RF (called approach 2), and SVM (called approach 3), which shaped

three different approaches in our research. Both sets of features (29 and 125 for

Brazilian and 32 and 132 for Mexican) are fed to each algorithm, and the results are

reported, compared, and evaluated. The flowchart of our three different classification

approaches is depicted in Figure 4.5.
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F igure 4 .5 : Framework of our three different data mining based approaches for
classification. PCA+DT, PCA+RF, and PCA+SVM for both 50 and 150 feature sets.
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We also implemented two deep learning based methods. First method has the

same neural network structure as VGG16. We utilized ImageNet as the checkpoint

and fined-tune VGG16 network with our own dataset. As you will see in the next

section, the performance of VGG16 is not as high as we expected it to be (we were

seeking comparable results with other proposed approaches) due to small dataset

dilemma.

Therefore we designed a 7-layer CNN with the same architecture as VGG16 with

less and smaller convolution and fully connected layers. Our 7-layer CNN consists

of 5 convolution layers, 2 fully connected layers, and 1 Softmax output layer. Since

the network is rather small, we trained it from scratch using our own image dataset.

Relu is utilized as the activation function and max-pooling is performed on pooling

layers. The 7-layer CNN structure is finalized after designing and testing different

architectures with different sizes and chose the one with the best test accuracy as our

proposed deep neural network. The design and architecture map of VGG16 along

with our proposed 7-layer CNN are depicted in Figures 4.6 and 4.7, respectively.

As you can see, 7-layer CNN is smaller version of VGG16 with fewer and smaller

convolution and fully connected layers.
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F igure 4 .6 : Our optimal design of deep neural network

F igure 4 .7 : Our optimal designed deep neural network – architecture map

As you can see in the desing of our CNN, after the first convolution layer, the

size of featuremap is the same as the original image. “Valid” convolution with zero

pading is applied to mantain the same size of the image after the first convolution.

Pooling is applied with factor 2. Therefore the first pooling shrinks the featuremap

size by factor 2. Same convolution and pooling operations are applied at next layers.

The twpo fully connected layers have 512 and 256 outputs respectively. Finally, the

softmax layer has 256 inputs and 39 or 12 outputs for Brazilian and Mexican classes

respectively.
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chapter 5

Results and Discussion

As described in Chapter 4, four different approaches are designed and implemented

for the automatic identification of CD Vectors in this research: approach 1: PCA+DT,

approach 2: PCA+RF, approach 3: PCA+SVM, and finally approach 4: CNNs.

In the first section, the results of the first approach (PCA+DT) in the cases of in-

volving or excluding feature selection step is discussed. Then the detailed evaluation

of results and discussion for the first three approaches are explained in the following

three sections.

Weka is utilized for the first data mining–based classification algorithms. When

evaluating multi–class classification models, Weka outputs a weighted average of

the per–class precision, recall, and f–measure: it computes these statistics for each

class individually, treating the corresponding class as the “positive” class and the

union of the other classes as the negative class, and computes a weighted average of

these per–class statistics, with a per–class weight that is equal to the proportion of

data in that class. In a multi–class classification problem (including two–class ones)

in Weka, micro–averaged precision, recall and f–measure are all almost the same

and identical to classification accuracy as measured by the percentage of correctly

classified instances. Therefore, since f–measure is the combination of precision and

recall values, it would also be considered and reported as the accuracy value of the

classifier in our experiments.

After first evaluation report for the first three approaches, the paired t–test applied

on these three approaches is described in Section 5.5. Approach 4: CNNs is explained

in Section 5.6. Finally, the overall comparison of all the approaches, along with

previously developed methods, is explained in Section 5.7.
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5 .1 feature selection

PCA algorithm extracts orthogonal features. If the optimal number of eigenvector

is extracted, the features would be completely independant and no data redundancy

will be available in the featureSet. On the other hand, finding the optimal number of

PCA features is a delicate and rather complicated task. There are techniques such as

scree plot and finding the elbow of the diagram to determine the optimal number of

PCA features, but the diagram has different elbows and determining which elbow is

the best one to select is a hard goal to achieve. Therefore, we applied trial and error

to find the optimal number of PCA features. In two different experiments, the total

of 50 and 150 eigenvectors are extracted to represent 90% and 99% of the values of

the normalized sorted eigenvalues for both Brazilian and Mexican species. Then, a

correlation based feature selection technique is applied on these featureSets to find

the optimal subset of features for both 50 and 150 featureSets. Total number of 32 and

132 features are selected for Mexican species. Total number of 29 and 125 features

are selected for Brazilian species. Both groups of selected featureSets are fed to our

approach 1: PCA+DT algorithm and the accuracies are compared. The results showed

that featureSets after feature selection had higher accuracy (more than 5%) than the

featureSets before feature selection step. Based on these results, we decided to apply

feature selection step as a necessary step in our three data mining based approaches

(approach 1 to approach 3).

5 .2 approach 1 : pca+dt

In the following tables (Tables 5.1 and 5.2), the percentage values of precision, recall, f–

measure and accuracy for every class of Brazilian and Mexican species along with the

number of species per class for two different sets of features (50 and 150) are depicted

for the PCA+DT method. The values for parameters of DT are set to a confidence factor

of 0.25 and a batch size of 200.

As we can see, the results of 150–features are better than 50–features for both the

Brazilian and Mexican datasets. On the other hand, extracting 150–features is more

time consuming than extracting 50–features. So, there is a trade–off between time
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consumption and the desired accuracy. The results of 150–features are perfect (100%)

for both Brazilian and Mexican classes. Because of the close infrastructure of the DT

and RF algorithms, a paired t–test is performed on them to examine the statistical

independence of these two algorithms.

Table 5 .1 : Summary of species analyzed, sample sizes of photographs, and accuracy
for the 12 species of Mexican triatomine bugs analyzed in this study.

PCA+DT # of features

Mexican Species 50 → 32 150 → 132

Species Sp # prec rec f–meas accu prec rec f–meas accu

Class 1 13 100 100 100 100 100 100 100 100

Class 2 31 100 100 100 100 100 100 100 100

Class 3 44 100 100 100 100 100 100 100 100

Class 4 30 100 100 100 100 100 100 100 100

Class 5 40 98.60 100 99.30 99.30 100 100 100 100

Class 6 12 97.10 100 98.60 98.60 100 100 100 100

Class 7 52 100 98.50 99.30 99.30 100 100 100 100

Class 8 23 100 100 100 100 100 100 100 100

Class 9 46 100 100 100 100 100 100 100 100

Class 10 16 100 100 100 100 100 100 100 100

Class 11 43 98.50 100 99.30 99.30 100 100 100 100

Class 12 60 100 95.60 97.70 97.70 100 100 100 100

Weighted Avg 410 99.50 99.50 99.50 99.50 100 100 100 100

In the Brazilian results with 50–features, the insects of the two classes of 13 and 14

which have lower accuracy rates compared to other classes, have close characteristics

(Type and appearance of the vector). Therefore, even though the number of bugs is

rather large in these two classes, they are misclassified by one another which resulted

in lower classification rate for both. The same scenario happened for pairs in 17 and
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24 classes, and pairs in 17 and 32 classes. This dilemma is significantly improved in

the 150–features case where more distinguishing features are extracted.

5 .3 approach 2 : pca+rf

In the following tables (Tables 5.3 and 5.4), the percentage values of precision, recall, f–

measure and accuracy for every class of Brazilian and Mexican species along with the

number of species per class and two different sets of features (50 and 150) are depicted

for PCA+RF method. The assigned values of parameters for the RF classification

algorithm: batch size of 200, number of iterations of 500, and number of execution slots of

8 (same as the number of CPU cores in the system).

As you can see, 50 and 150 features’ accuracy rates are perfect 100% for Mexican

species.

For the Brazilian dataset, accuracy of 150–features is perfect 100%, while the

accuracy of 50–features is 98.80%. Even though the results of 50–features is slightly

less accurate than 150–features, it is still acceptable and promising values for our

purpose. Brazilian dataset has more classes and is more complicated than the Mexican

dataset. Therefore, it is reasonable to observe slightly less accurate for it.
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Table 5 .2 : Summary of species analyzed, sample sizes of photographs, and accuracy
for the 39 species of Brazilian triatomine bugs analyzed in this study.

PCA+DT # of features

Brazilian Species 50 → 29 150 → 125
Species Sp # prec rec f–meas accu prec rec f–meas accu

Class 1 13 98.80 100 99.40 99.40 100 100 100 100

Class 2 31 100 100 100 100 100 100 100 100

Class 3 44 98.80 100 99.40 99.40 100 100 100 100

Class 4 30 100 100 100 100 100 100 100 100

Class 5 40 98.80 100 99.40 99.40 100 100 100 100

Class 6 12 100 100 100 100 100 100 100 100

Class 7 52 80.50 74.70 77.50 77.50 100 100 100 100

Class 8 23 96.50 100 98.20 98.20 100 100 100 100

Class 9 46 100 100 100 100 100 100 100 100

Class 10 16 98.80 100 99.40 99.40 100 100 100 100

Class 11 43 100 100 100 100 100 100 100 100

Class 12 60 100 100 100 100 100 100 100 100

Class 13 80 81.70 69.9 75.30 75.30 100 100 100 100

Class 14 68 90.70 81.90 86.10 86.10 100 100 100 100

Class 15 57 96.20 90.40 93.20 93.20 100 100 100 100

Class 16 32 97.60 100 98.80 98.80 100 100 100 100

Class 17 29 96.50 100 98.20 98.20 100 100 100 100

Class 18 64 91.10 86.70 88.90 88.90 100 100 100 100

Class 19 38 100 100 100 100 100 100 100 100

Class 20 22 93.30 100 96.50 96.50 100 100 100 100

Class 21 64 83.50 79.50 81.50 81.50 100 100 100 100

Class 22 31 100 100 100 100 100 100 100 100

Class 23 29 96.50 100 98.20 98.20 100 100 100 100

Class 24 55 92.80 92.80 92.80 92.80 100 100 100 100

Class 25 21 100 100 100 100 100 100 100 100

Class 26 40 98.80 100 99.40 99.40 100 100 100 100

Class 27 40 98.80 100 99.40 99.40 100 100 100 100

Class 28 33 100 100 100 100 100 100 100 100

Class 29 29 97.60 100 98.80 98.80 100 100 100 100

Class 30 26 100 100 100 100 100 100 100 100

Class 31 28 100 100 100 100 100 100 100 100

Class 32 56 82.40 84.30 83.30 83.30 100 100 100 100

Class 33 55 84.40 91.60 87.90 87.90 100 100 100 100

Class 34 32 96.50 100 98.20 98.20 100 100 100 100

Class 35 104 75.00 75.90 75.40 75.40 100 100 100 100

Class 36 41 98.80 100 99.40 99.40 100 100 100 100

Class 37 30 100 100 100 100 100 100 100 100

Class 38 48 100 100 100 100 100 100 100 100

Class 39 20 100 100 100 100 100 100 100 100

Weighted Avg 1620 95.50 95.60 95.50 95.50 100 100 100 100
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Table 5 .3 : Summary of species analyzed, sample size of images, and accuracy for
the 12 species of Mexican triatomine bugs analyzed in this study.

PCA+RF # of features

Mexican Species 50 → 32 150 → 132

Species Sp # prec rec f–meas accu prec rec f–meas accu

Class 1 13 100 100 100 100 100 100 100 100

Class 2 31 100 100 100 100 100 100 100 100

Class 3 44 100 100 100 100 100 100 100 100

Class 4 30 100 100 100 100 100 100 100 100

Class 5 40 100 100 100 100 100 100 100 100

Class 6 12 100 100 100 100 100 100 100 100

Class 7 52 100 100 100 100 100 100 100 100

Class 8 23 100 100 100 100 100 100 100 100

Class 9 46 100 100 100 100 100 100 100 100

Class 10 16 100 100 100 100 100 100 100 100

Class 11 43 100 100 100 100 100 100 100 100

Class 12 60 100 100 100 100 100 100 100 100

Weighted Avg 410 100 100 100 100 100 100 100 100

In the Brazilian results with 50–features the insects of the two classes of 13 and 14,

which have lower accuracy compared to other classes, have close characteristics, and

their insects are misclassified by one another, which resulted in lower classification

rate for both. The same scenario happened for pairs in 21 and 32 classes. This

dilemma is resolved by extracting more distinguishing features (150–features) from

images.
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Table 5 .4 : Summary of species analyzed, sample sizes of photographs, and accuracy
for the 39 species of Brazilian triatomine bugs analyzed in this study.

PCA+RF # of features

Brazilian Species 50 → 29 150 → 125
Species Sp # prec rec f–meas accu prec rec f–meas accu

Class 1 13 100 100 100 100 100 100 100 100

Class 2 31 100 100 100 100 100 100 100 100

Class 3 44 100 100 100 100 100 100 100 100

Class 4 30 100 100 100 100 100 100 100 100

Class 5 40 100 100 100 100 100 100 100 100

Class 6 12 100 100 100 100 100 100 100 100

Class 7 52 92.90 95.20 94.00 94.00 100 100 100 100

Class 8 23 100 100 100 100 100 100 100 100

Class 9 46 100 100 100 100 100 100 100 100

Class 10 16 100 100 100 100 100 100 100 100

Class 11 43 100 100 100 100 100 100 100 100

Class 12 60 100 100 100 100 100 100 100 100

Class 13 80 96.00 86.70 91.10 91.10 100 100 100 100

Class 14 68 87.90 96.40 92.00 92.00 100 100 100 100

Class 15 57 100 100 100 100 100 100 100 100

Class 16 32 100 100 100 100 100 100 100 100

Class 17 29 100 100 100 100 100 100 100 100

Class 18 64 100 98.80 99.40 100 100 100 100 100

Class 19 38 100 100 100 100 100 100 100 100

Class 20 22 100 100 100 100 100 100 100 100

Class 21 64 93.70 89.20 91.40 91.40 100 100 100 100

Class 22 31 100 100 100 100 100 100 100 100

Class 23 29 100 100 100 100 100 100 100 100

Class 24 55 98.80 100 99.40 99.40 100 100 100 100

Class 25 21 100 100 100 100 100 100 100 100

Class 26 40 100 100 100 100 100 100 100 100

Class 27 40 100 100 100 100 100 100 100 100

Class 28 33 100 100 100 100 100 100 100 100

Class 29 29 100 100 100 100 100 100 100 100

Class 30 26 100 100 100 100 100 100 100 100

Class 31 28 100 100 100 100 100 100 100 100

Class 32 56 89.70 94.00 91.80 91.80 100 100 100 100

Class 33 55 100 100 100 100 100 100 100 100

Class 34 32 100 100 100 100 100 100 100 100

Class 35 104 95.10 92.80 93.90 93.90 100 100 100 100

Class 36 41 100 100 100 100 100 100 100 100

Class 37 30 100 100 100 100 100 100 100 100

Class 38 48 100 100 100 100 100 100 100 100

Class 39 20 100 100 100 100 100 100 100 100

Weighted Avg 1620 98.80 98.80 98.80 98.80 100 100 100 100
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5 .4 approach 3 : pca+svm

In the following tables (Tables 5.5 and 5.6), the percentage values of precision, recall,

f–measure and accuracy for every class of Brazilian and Mexican species along with

the number of species per class and two different sets of features (50 and 150) are

depicted for PCA+SVM method.

The optimal parameter values for the SMO classification algorithm for Mexican

species with 150–features are the complexity parameter C equal to 100, RBFKernel

with gamma equal to 0.2, and batch size equal to 200. The grid search algorithm

optimally achieves C and gamma values in Weka with XBase and YBase of 10, XMax,

and YMax of 3.0, and XMin and YMin of -3.0. Data also is standardized before

applying the RBFKernel function. After finding the right range for gamma (0.1) by

grid search, we tested more precise values using trial and error (reaching a value of

0.2).

Using the same gridSearch method to find optimal parameter values, the opti-

mal parameter values for SMO classification algorithm for Mexican species with 50–

features are c of 100, RBFKernel with gamma of 0.15, and batch size of 200. The same

test is applied for Brazilian species with c of 100 and gamma of 0.2 for 150–features,

and c of 100 and gamma of 1 for 50–features.

As we can see, the results of 150–features are better than 50–features for both

Brazilian and Mexican datasets. SVM is a very powerful and robust algorithm while

dealing with high dimensional data. The results improve with extracting more fea-

tures but extracting more than 150–features would be very time–consuming. Having

more data points may strongly result in a perfect accuracy for the SVM algorithm.

Although, SVM’s current results are also very promising and outperform the results

of previously developed methods with significant improvement (more than 10%).
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Table 5 .5 : Summary of species analyzed, sample sizes of photographs, and accuracy
for the 12 species of Mexican triatomine bugs analyzed in this study.

PCA+SVM # of features

Mexican Species 50 → 32 150 → 132

Species Sp # prec rec f–meas accu prec rec f–meas accu

Class 1 13 100 100 100 100 100 100 100 100

Class 2 31 100 100 100 100 100 100 100 100

Class 3 44 82.60 83.80 83.20 83.20 98.50 98.50 98.50 98.50

Class 4 30 98.50 98.50 98.50 98.50 100 100 100 100

Class 5 40 100 98.50 99.30 99.30 100 100 100 100

Class 6 12 100 100 100 100 100 100 100 100

Class 7 52 100 100 100 100 100 100 100 100

Class 8 23 94.40 98.50 96.40 96.40 88.30 100 93.80 93.80

Class 9 46 97.00 94.10 95.50 95.50 100 86.80 92.90 92.90

Class 10 16 100 100 100 100 100 100 100 100

Class 11 43 100 100 100 100 100 100 100 100

Class 12 60 83.60 82.40 83.00 83.00 98.50 98.50 98.50 98.50

Weighted Avg 410 96.30 96.30 96.30 96.30 98.80 98.70 98.60 98.60

PCA+SVM faces the same dilemma as the two previous approaches (PCA+DT

and PCA+RF) regarding the accuracy of similar pairs of classes. Even though the

SVM results are less accurate than the results of DT and RF, SVM is a more powerful

algorithm compared to the tree-based algorithms and more robust regarding overfit-

ting. Being limited to a small dataset is a serious disadvantage for the performance

of the SVM algorithm in this case.
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Table 5 .6 : Summary of species analyzed, sample sizes of photographs, and accuracy
for the 39 species of Brazilian triatomine bugs analyzed in this study.

PCA+SVM # of features

Brazilian Species 50 → 29 150 → 125
Species Sp # prec rec f–meas accu prec rec f–meas accu

Class 1 13 97.50 95.20 96.30 96.30 100 100 100 100

Class 2 31 100 100 100 100 100 100 100 100

Class 3 44 100 100 100 100 100 100 100 100

Class 4 30 79.10 86.70 82.80 82.80 100 100 100 100

Class 5 40 100 100 100 100 100 100 100 100

Class 6 12 96.20 90.40 93.20 93.20 100 97.60 98.80 98.80

Class 7 52 94.40 80.70 87.00 87.00 100 100 100 100

Class 8 23 98.80 97.60 98.20 98.20 100 100 100 100

Class 9 46 97.60 96.40 97.00 97.00 97.60 100 98.80 98.80

Class 10 16 90.20 100 94.90 94.90 80.40 98.80 88.60 88.60

Class 11 43 95.10 92.80 93.90 93.90 100 100 100 100

Class 12 60 82.80 92.80 87.50 87.50 96.30 95.20 95.80 95.80

Class 13 80 80.20 97.60 88.00 88.00 98.80 100 99.40 99.40

Class 14 68 100 91.60 95.60 95.60 100 98.80 99.40 99.40

Class 15 57 85.90 88.00 86.90 86.90 91.10 86.70 88.90 88.90

Class 16 32 94.30 100 97.10 97.10 100 100 100 100

Class 17 29 92.00 97.60 94.70 94.70 100 98.80 99.40 99.40

Class 18 64 100 97.60 98.80 98.80 100 100 100 100

Class 19 38 100 100 100 100 100 100 100 100

Class 20 22 100 100 100 100 100 100 100 100

Class 21 64 95.80 83.10 89.00 89.00 98.40 75.90 85.70 85.70

Class 22 31 96.30 95.20 95.80 95.80 95.20 96.40 95.80 95.80

Class 23 29 100 100 100 100 100 100 100 100

Class 24 55 97.60 100 98.80 98.80 100 100 100 100

Class 25 21 100 100 100 100 98.80 100 99.40 99.40

Class 26 40 87.50 84.30 85.90 85.90 87.40 91.60 89.40 89.40

Class 27 40 100 90.40 94.90 94.90 100 100 100 100

Class 28 33 100 100 100 100 100 100 100 100

Class 29 29 96.40 97.60 97.00 97.00 100 100 100 100

Class 30 26 100 100 100 100 100 100 100 100

Class 31 28 95.30 98.80 97.00 97.00 92.20 100 96.00 96.00

Class 32 56 92.90 95.20 94.00 94.00 100 100 100 100

Class 33 55 100 100 100 100 100 100 100 100

Class 34 32 94.00 95.20 94.60 94.60 100 97.60 98.80 98.80

Class 35 104 84.60 79.50 82.00 82.00 100 91.60 95.60 95.60

Class 36 41 100 91.60 95.60 95.60 100 100 100 100

Class 37 30 100 100 100 100 100 100 100 100

Class 38 48 100 100 100 100 100 100 100 100

Class 39 20 98.80 100 99.40 99.40 97.60 100 98.80 98.80

Weighted Avg 1620 95.50 95.30 95.30 95.30 98.30 98.20 98.20 98.20
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5 .5 paired t–test

We performed Weka implementation of paired t–test for the first three approaches to

test these algorithms’ statistical independence of from each other. Since the results of

150-features outperform 50–features in all the experiments, we utilize this dataset for

paired t–test for Brazilian and Mexican species.

We upload the 150–features Brazilian dataset with 3237 instances in the Weka Ex-

perimenter module. We choose a classification option (via regression) as the method

and 10–fold cross–validation as the algorithms performance evaluator method. We

add the three DT, RF, and SVM algorithms with optimal configurations in the algo-

rithms section and set the number of repetitions of the test to 10. The evaluation is

performed on each algorithm for 10 × 10 = 100 times with this setting. Then, we run

the analyzer. After a considerable amount of time5(100 runs of each algorithm = 300

runs) the results are ready for analyzing.

We utilized Weka software for performing paired t–test on our Weka based classi-

fication approaches. A paired t–test is implemented at the “Experimenter” module of

Weka. After uploading our processed dataset in the experimenter module, we select

10–fold cross–validation as the evaluation metric to get robust, consistent results. The

other factor in this process is the number of repetitions for the test. For example, by

choosing ten as a number of repetitions, each algorithm will be performed 10 × 10 =

100 times for the sake of paired t–test evaluation. We also add our three algorithms

of PCA+DT, PCA+RF, and PCA+SVM to the module and present and analyze paired

t–test results in corresponding experimenter sections.

For Analyzing the results, we choose paired t–test at the testing method, ”per-

cent_correct“ as the comparison field, significance level of 0.05, and Random Forest

algorithm as the test base. The paired t–test for Mexican and Brazilian species are

depicted in Figures 5.1 and 5.2, respectively.

515 minutes on HP laptop of Core i7 1.80 GHz with 16GRAM with Windows 10 operating System
and Weka version of 3.8.4 – the needed heap size for Weka is also more than 10GBs for building all the
models in this experiment
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F igure 5 .1 : Paired t–test results comparsion for RF (Test base), DT and SVM for
Brazilian species

As we can see, the output uses the annotation v or * to indicate that a specific

result is statistically better (v) or worse (*) than the baseline scheme at the significance

level specified (currently 0.05). Interpreting Brazilian results, the difference between

DT and Rf is not statistically significant. But the results of SMO are worse than Rf,

which makes sense based on its lower accuracy.

The process is the same for the Mexican dataset. We upload the 150–features

Mexican dataset with 816 instances in the Weka Experimenter module, set the same

configuration and run the test. We set the same configuration for analyzing the

results as well. The interpretation of Mexican results is close to Brazilian results.

The difference between DT and Rf is not statistically significant. But the SMO results

are worse than Rf, which makes sense based on its lower accuracy rates. Because

the difference between DT and RF algorithm is not statistically significant for both

Brazilian and Mexican species only RF results are reported (RF outperformed DT in

previous experiments) for comparison with other approaches.
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F igure 5 .2 : Paired T–test results comparsion for RF (Test base), DT and SVM for
Mexican species

5 .6 approach 4 : deep cnns

As mentioned, two different structures are implemented and tested for deep learning

classification. The first approach is designing VGG16 pre–trained with ImageNet

dataset and fine–tuned with our dataset (Refer to Figure 3.8 for network structure).

The second approach is creating a smaller 7–layer CNN and train it with our dataset

from scratch (Refer to Figure 4.7 for network structure).

The network parameters for VGG16 are learning rate of 0.002, weight decay of

0.0005 and batch size of 64 and 128 for Mexican and Brazilian species respectively.

The algorithm was run for 200 epochs. The network parameters for 7–layer CNN are

learning rate of 0.0003, weight decay of 0.002 and batch size of 64 and 128 for Mexican

and Brazilian species respectively. The network was run for 350 epochs. The accuracy

rates of these two deep neural networks for Mexican and Brazilian datasets are shown

in Table 5.7.
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Table 5 .7 : Testing accuracy results comparsion for the two CNNs

Methods Region Precision Recall F1–score Accuracy

VGG–16 Brazil 83.25 88.60 86.52 85.77

Mexico 82.57 89.20 87.93 87.50

7–layer CNN Brazil 95.33 97.57 96.82 96.93

Mexico 96.71 96.48 96.53 96.26

aValues are (%) and average of all values for each country
bF1–score is the same factor as reported f–measure

Even though transfer learning (fine–tuning) is a very beneficial solution for ac-

celerated and feasible convergence when dealing with rather small datasets, it does

not work properly with our dataset (the dataset is too small to be able to fine–tune

ImageNet weights properly). Therefore, it does not perform as well as we expected.

The convergence is not optimal and accuracy rates are rather low. On the other hand,

the results of smaller 7–layer CNN is acceptable and promising. Once the delimma of

small dataset is overcome, better results will likely to be achieved.

5 .7 overall results comparison

In this section, we wrap up the results and discussion chapter by illustrating the

complete comparison of the accuracy in the form of a bar chart. Based on our several

experiments, we can infer some conclusions and filter out insignificant results from

this chart. Firstly, the results of the 150–features dataset outperformed the results of

the 50–features dataset in all the cases; therefore, we report only 150–feature results in

the chart. Secondly, the difference between DT and RF is not statistically significant;

therefore, only RF results are reported (RF outperformed DT). Lastly, between the

two Deep NN algorithms, 7–layer CNN outperformed VGG16 significantly; therefore,

only the 7–layer CNN results are reported. All results presented in this chapter are
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shown in Figure 5.3.

F igure 5 .3 : The comparison of the accuracy of our proposed approaches with
previously developed systems.

As we can see, our proposed methods significantly outperformed previously de-

veloped systems. More than a 10% increase in accuracy in both Brazilian and Mexican

species was demonstrated. Between our three PCA+RF, PCA+SVM, and 7–layer CNN

algorithms, PCA+RF has perfect accuracy followed by PCA+SVM and 7–layer CNN.

SVM and CNN are statistically better and more robust classification algorithms than

RF and are less prone to overfitting. But in our research, the size of the image dataset

was a limitation for the performance of these two state–of–the–art classification algo-

rithms which emphasizes the challenge facing CD vector identification systems. We

believe using larger image sets of kissing bugs will achieve better results using SVM

and CNN algorithms.
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chapter 6

Conclusion

In this research, five different data mining–based and deep learning–based methods

regarding CD vector identification are presented, and their results are compared with

the two previously developed systems.

The first previously developed system consists of preprocessing, feature extraction,

and classification steps. After several preprocessing steps, including lens distortion

correction, background removal, specimen’s body edge identification, clipping the

legs and antennas from the image, and smoothing the clipped edge, they extracted

ten geometrical features from images. For classification, they used a feed–forward

neural network applied separately on Brazilian and Mexican species. They gathered a

CD vector dataset consisting of more than 2000 vector images belonging to 51 different

CD acquired species from Brazil and Mexico and performed their experiments using

them as inputs. Their dataset is utilized in their second research paper (referred

to as the second previously developed system) and used by our research. They

achieved accuracy of 87.80% and 80.30% for Brazilian and Mexican species. The same

research team designs the second previously developed system to improve the results

of the first system. They used the same dataset in the second research as well. They

implemented a deep neural network. The achieved accuracy for their techniques is

86.70% and 83.00% for Brazilian and Mexican species respectively. Based on these

rates their second system outperforms their first designed system.

The two reference methods had three significant shortcomings that are addressed

and improved in our research. Three out of five proposed algorithms have the same

preprocessing steps as the first reference research with different sub–steps. We im-

proved the overall results by enhancing each step of the reference algorithm.

The first dilemma is their need for high–resolution, high–quality images, which

is not practical, especially when working with a low-resolution cell phone captured

images with not much perfect lighting and uniformity in the setting. We addressed



78

this dilemma by grayscaling and down-sizing [1936× 2592] RGB images to [128× 128]

grayscale images to perform feature extraction easier and faster.

The second dilemma is performing several preprocessing steps using different

image filtering and morphological operations to be able to extract their geometrical

features. We limited preprocessing to background removal operation using the K-

means clustering technique. Instead of ten geometrical features, we applied PCA

– which extracts the best-scattered variance-based features from image data and ex-

tracted two sets of 50 and 150 feature sets.

The third dilemma is the value of accuracy (80–88%), which leaves room for

improvement. For classification, we utilized and personalized three different data

mining algorithms of DT, RF and SVM. The first three proposed methods are named

“PCA+DT”, “PCA+RF”, and “PCA+SVM”.

We also balanced our feature datasets using Weka Class Balancer and Resample

filters and performed feature selection using the arrtibuteSelector feature in Weka. We

achieved the accuracy of 100% and 100% for PCA+DT, 100% and 100% for PCA+RF,

and 98.20% and 98.50% for PCA+SVM for Brazilian and Mexican species respectively

using 150–features dataset as input. The accuracy of all three algorithms considerably

outperforms the results of the two reference systems.

The last two proposed methods in this research have the same baseline as the

second reference system. We fed our preprocessed data to two different deep convo-

lutional neural networks. In the second reference model, high–resolution raw images

are fed to the neural network as input. We used the lower resolution gray–scaled

images as the input (to address the need for high–resolution, high–quality images).

We utilized and designed two different architectures. First deep neural network is the

same as VGG16 network pre–trained with ImageNet (checkpoint) and fine–tuned with

our image dataset. The Second deep neural network architecture is a 7–layer CNN

with the same structure as VGG network with lower and smaller convolution and

fully–connected layers and trained from scratch using our dataset. We achieved the

accuracy of 85.77% and 87.50% for VGG16, and 96.93% and 96.26% for 7–layer CNN

for Brazilian and Mexican species respectively using 150–feature dataset as input.
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All of our five proposed methods outperform the previously developed systems re-

garding the accuracy. Since the available dataset is small, powerful deep convolutional

neural networks and SVM are not performing as good as tree–based algorithms. This

problem will be addressed in future research with more acquired images of kissing

bugs.

As mention, due to shortage of suffiecient datasets, the first phase of this research

which is classification of kissing bugs versus different bugs was not possible to carry

out. We plan to gather more Triatomine bug images from from different clinical trials

and researches and form a suitable consistent dataset to be able to design a system for

that phase. Regarding the second phase of this research, which current project was

dedicated to it, more kissing bug images will be gathered and the proposed frame-

work will be tested and configured for larger dataset. Different feature extraction

algorithms, specially the ones which preserve spatial information of the images, will

be implemented and tested in the future. Finally since it is very important to catch

the bug and treat CD right away, designing and implementing an app for CD vector

classification is considered to be done after acquiring perfect identification results for

our CNN and SVM algorithm.
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